Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 42 Issue 5
May  2024
Turn off MathJax
Article Contents
NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
Citation: NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014

ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS

doi: 10.13205/j.hjgc.202405014
  • Received Date: 2023-06-19
    Available Online: 2024-07-11
  • To study the effect of this technology on the removal of different chlorinated hydrocarbons, a chlorinated hydrocarbon polluted site in the Pearl River Delta was selected, and laboratory experiments and pilot-scale field experiments were carried out using the room temperature desorption technology enhanced by chemical oxidation. The results showed that after room temperature desorption, the average removal rates of contaminants such as vinyl chloride, trichloroethylene, and tetrachloroethylene in the soil were all above 80%. After alkaline activation and sodium persulfate chemical oxidation, except for tetrachloroethylene in heavily polluted soil, the removal rates of contaminants in the soil were all above 90%. Different levels of pollution in the soil had achieved the remediation target values for vinyl chloride, trichloroethylene, and tetrachloroethylene. After on-site remediation, the soil chloroethylene, trichloroethylene, and tetrachloroethylene all reached the remediation target values. The initial concentration of contaminants has a great influence on the removal of chlorinated hydrocarbons. The higher the initial concentration, the higher the desorption rate of chlorinated hydrocarbons. Engineering practice has shown that the enhanced normal temperature desorption proposed in this study is feasible for the remediation of chlorinated hydrocarbon polluted soil.
  • loading
  • [1]
    廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地:中国环境修复领域的新课题[J].环境科学,2011,32(3):784-794.
    [2]
    朱骏, 聂庆秀, 朱正林, 等. 重有机污染土壤处理技术研究进展[J].绿色科技,2014(11):160-162.
    [3]
    XU C B, YANG W J, ZHU L S, et al. Remediation of polluted soil in China: policy and technology bottlenecks[J]. Environmental Science & Technology, 2017, 51(24): 14027-14029.
    [4]
    乔斐, 王锦国, 郑诗钰, 等. 重点区域建设用地污染地块特征分析[J].中国环境科学,2022,42(11):5265-5275.
    [5]
    KASTANEK F, DEMNEROVA K, PAZLAROVA J, et al. Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field condition[J]. International Biodeterioration & Biodegradation, 1999, 44(1): 39-47.
    [6]
    SCHEUTZ C, DURANT N D, HANSEN M H, et al. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface: a critical review[J]. Water Research, 2011, 45(9): 2701-2723.
    [7]
    王占生, 刘文君. 微污染水源饮用水处理[M]. 北京:中国建筑工业出版社, 1999.
    [8]
    马欣程, 徐红霞, 孙媛媛, 等. 氯代烃污染场地生物自然衰减修复研究进展[J].中国环境科学,2022,42(11):5285-5298.
    [9]
    牛真茹, 李飞飞, 张有军, 等. 某典型污染场地土壤中氯代烃类污染的空间分布与污染成因[J].环境工程,2022,40(3):94-101.
    [10]
    宋小毛. 环境中氯代烃分析方法及污染土壤气相抽提法研究[D].上海:华东理工大学, 2011.
    [11]
    胡黎明, 邢巍巍, 吴照群. 多孔介质中非水相流体运移的数值模拟[J].岩土力学,2007,28(5):951-955.
    [12]
    任加国, 郜普闯, 徐祥健, 等. 地下水氯代烃污染修复技术研究进展[J].环境科学研究,2021,34(7):1641-1653.
    [13]
    毛柏杨. 挥发性有机污染场地气相抽提(SVE)修复技术机理与分析方法研究[D].南京:东南大学, 2021.
    [14]
    ALAZAIZA M, SU K N, BOB M M, et al. Non-aqueous phase liquids distribution in three-fluid phase systems in double-porosity soil media: experimental investigation using image analysis[J]. Groundwater for Sustainable Development, 2018, 7: 133-142.
    [15]
    KAMON M, LI Y, ENDO K, et al. Experimental study on the measurement of S-P relations of LNAPL in a porous medium[J]. Soils and Foundations, 2007, 47(1): 33-45.
    [16]
    谷庆宝, 郭观林, 周友亚, 等. 污染场地修复技术的分类、应用与筛选方法探讨[J].环境科学研究,2008,127(2):197-202.
    [17]
    WILLIAMSON J C, AKINOLA M, NASON M A, et al. Contaminated land clean-up using composted wastes and impacts of VOCs on land[J]. Waste Management, 2009, 29(5): 1772-1778.
    [18]
    李慧颖, 王盼盼, 刘鹏, 等. 氯代烃污染场地原位热脱附降温阶段土壤气相污染富集与分布特征[J].环境科学研究,2022, 35(5): 1159-1168.
    [19]
    杨乐巍, 张晓斌, 郭丽莉, 等. 异位土壤气相抽提修复技术在北京某地铁修复工程中的应用实例[J].环境工程,2016, 34(5): 170-172.
    [20]
    张桐, 张展华, 胡杰华, 等. 淋洗技术在土壤污染修复中的应用与挑战[J].环境化学,2022,41(11):3599-3612.
    [21]
    王艳伟, 李书鹏, 康绍果, 等. 中国工业污染场地修复发展状况分析[J].环境工程,2017,35(10):175-178.
    [22]
    谷庆宝, 侯德义, 伍斌, 等. 污染场地绿色可持续修复理念、工程实践及对我国的启示[J].环境工程学报,2015, 9(8): 4061-4068.
    [23]
    生态环境部.《土壤环境质量建设用地土壤污染风险管控标准(试行)》:GB 36600—2018[S].北京:中国环境出版社,2019.
    [24]
    生态环境部.《建设用地土壤污染风险管控和修复监测技术导则》:HJ 25.2—2019[S].北京:中国环境出版社,2019.
    [25]
    生态环境部.《土壤干物质和水分的测定重量法》: HJ 613—2011[S].北京:中国环境出版社,2011.
    [26]
    生态环境部.《土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱-质谱法》: HJ 605—2011[S].北京:中国环境出版社,2011.
    [27]
    勾立争, 刘长波, 刘诗诚, 等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J].环境工程,2018,36(2):184-187.
    [28]
    廖志强, 朱杰, 罗启仕, 等. 污染土壤中苯系物的热解吸[J].环境化学,2013, 32(4): 646-650.
    [29]
    张攀, 高彦征, 孔火良. 污染土壤中硝基苯热脱附研究[J].土壤,2012, 44(5): 801-806.
    [30]
    史怡, 李发生, 徐竹, 等. 机械通风法处理土壤中氯代烃的修复效果研究[J].环境科学与技术,2013, 36(12): 78-83.
    [31]
    杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J].环境工程技术学报,2016, 6(6): 559-570.
    [32]
    杨玉洁, 王春雨, 沙雪华, 等. 烃类污染土壤热强化气相抽提技术的脱附动力学[J].环境工程学报,2019, 13(10): 2328-2335.
    [33]
    焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J].环境工程学报,2019, 13(9): 2027-2036.
    [34]
    赵倩, 李书鹏, 刘渊文, 等. 间接热解吸工艺对去除污染土壤中PAHs的应用效果研究[J].环境工程,2018, 36(3): 180-184.
    [35]
    马妍, 李发生, 徐竹, 等. 生石灰强化机械通风法修复三氯乙烯污染土壤[J].环境污染与防治,2014, 36(9): 1-6.
    [36]
    LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562.
    [37]
    FURMAN O S, TEEL A L, AHMAD M, et al. Effect of basicity on persulfate reactivity[J]. Journal of Environmental Engineering-ASCE, 2011, 137(4): 241-247.
    [38]
    FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.
    [39]
    董欣竹, 钱林波, 龙颖, 等. 高级氧化技术修复萘污染土壤和地下水研究进展[J].土壤,2023,55(1):11-20.
    [40]
    徐西蒙, 宗绍燕, 刘丹. 钢渣碱活化过硫酸盐降解双酚A[J].中国环境科学,2019,39(7):2889-2895.
    [41]
    代朝猛, 王泽雨, 段艳平, 等. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J].材料导报,2020, 34(增刊1): 107-110.
    [42]
    李传维, 迟克宇, 杨乐巍, 等. 碱活化过硫酸盐在某氯代烃污染场地地下水修复中的应用[J].环境工程学报,2021, 15(6): 1916-1926.
    [43]
    冉春秋, 葛辉, 赵钰, 等. 余热余碱活化过硫酸盐处理精制棉黑液[J].工业水处理,2022, 42(3): 106-113.
    [44]
    朱杰,罗启仕,郭琳,等.碱热活化过硫酸盐氧化水中氯苯的试验[J].环境化学,2013,32(12):2256-2262.
    [45]
    TAN Z X, FENG W, AI P, et al. Effect of different work conditions on the thermal desorption remediation model of contaminated soil[J]. Soil & Sediment Contamination, 2015, 24(7): 771-785.
    [46]
    LIANG C J, GUO Y Y. Remediation of diesel-contaminated soils using persulfate under alkaline condition[J]. Water Air And Soil Pollution, 2012, 223(7): 4605-4614.
    [47]
    吴昊, 孙丽娜, 王辉, 等. 活化过硫酸钠原位修复石油类污染土壤研究进展[J].环境化学,2015, 34(11): 2085-2095.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (36) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return