Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 5
May  2024
Turn off MathJax
Article Contents
LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022
Citation: LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022

RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY

doi: 10.13205/j.hjgc.202405022
  • Received Date: 2023-06-08
    Available Online: 2024-07-11
  • With the progress of industrialization, human living standards have been greatly improved. With the rapid economic development, a large quantity of fossil fuel combustion of CO2 is emitted into the atmosphere, aggravating global warming. At present, the development of CO2 capture and storage technology (CCS) is an effective way to reduce CO2 emissions from industrial production. Due to the huge carbon sequestration potential of steel slag and the low economic cost, from the perspective of the economy and environment, steel slag carbon sequestration technology will have a bright future. In this paper, the research status and future development of steel slag carbon sequestration technology are reviewed. The composition and resource utilization of steel slag are briefly introduced, and then the reaction mechanism, the existing problems and future development of steel slag carbon sequestration technology are put forward.
  • loading
  • [1]
    PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M, et al. Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460.
    [2]
    World Meteorological Organization.State of the Global Climate 2020[EB/OL].https://download.caixin.com/upload/1264_Statement_2020_en.pdf.
    [3]
    安永碳中和课题组. 一本书读懂碳中和[M]. 北京: 机械工业出版社, 2021.
    [4]
    CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 17.
    [5]
    BP.Energy Outlook 2020 edition[EB/OL].https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf.
    [6]
    世界钢铁协会.世界钢铁统计数据2022[EB/OL].2022.https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2022-CN.pdf.
    [7]
    中国废钢铁应用协会.废钢铁产业"十四五"发展规划发布[N/OL]. 中国冶金报,2021-09-17.(www.csteelnews.com/xwzx/jrrd/202109/t20210917

    _55000.html).
    [8]
    江威. 炼钢钢渣处理工艺研究与应用[J]. 科技视界, 2018(4): 228-229.
    [9]
    张朝晖, 廖杰龙, 巨建涛, 等. 钢渣处理工艺与国内外钢渣利用技术[J]. 钢铁研究学报, 2013, 25(7): 1-4.
    [10]
    张作顺, 徐利华, 余广炜, 等.国内钢渣处理方法及资源化利用的研究进展[C]//2010年全国能源环保生产技术会议.九江: 中国金属学会, 2010: 6.
    [11]
    BOBICKI R E, LIU Q X, XU Z H, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science, 2012, 38(2): 302-320.
    [12]
    YILDIRIM I Z, PREZZI M. Chemical, mineralogical, and morphological properties of steel slag[J]. Advances in Civil Engineering, 2011, 2011: 1-13.
    [13]
    王雪. 钢渣碳化潜能评估及脱硫石膏激发钢渣碳化建材的制备[D].北京: 北京科技大学, 2021.
    [14]
    王新凤. 钢渣处理和综合利用探析[J].低碳世界, 2021,11(6): 305-306.
    [15]
    YADAV S, MEHRA A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag[J]. Waste Management, 2017, 64: 348-357.
    [16]
    SALIMI M, GHORBANI A. Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers[J]. Applied Clay Science, 2020, 184: 1-13.
    [17]
    DAS S, SOULIMAN B, STONE D, et al. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8295-8304.
    [18]
    SHEN D H, WU C M, DU J C. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture[J]. Construction and Building Materials, 2009, 23(1): 453-461.
    [19]
    LUXAN M P, SOTOLONGO R, DORREGO F, et al. Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace[J]. Cement and Concrete Research, 2000, 30(4): 517-519.
    [20]
    LI L F, ZHONG X Z, LING T C. Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks[J]. Journal of Building Engineering, 2022, 45: 103504.
    [21]
    MANSO J M, POLANCO J A, LOSANEZ M, et al. Durability of concrete made with EAF slag as aggregate[J]. Cement and Concrete Composites, 2006, 28(6): 528-534.
    [22]
    REVATHY T D R, PALANIVELU K, Ramachandran A. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature[J]. Environmental Science and Pollution Research, 2016, 23(8): 7349-7359.
    [23]
    MAHOUTIAN M, SHAO Y, MUCCI A, et al. Carbonation and hydration behavior of EAF and BOF steel slag binders[J]. Materials and Structures, 2015, 48(9): 3075-3085.
    [24]
    SHI C J. Steel slag—its production, processing, characteristics, and cementitious properties[J]. Civil Engineering, 2004, 16(3): 230.
    [25]
    TOSSAVAINEN M, ENGSTROM F, YANG Q, et al. Characteristics of steel slag under different cooling conditions[J]. Waste Management, 2007, 27(10): 1335-1344.
    [26]
    孙靖婷, 谭昭君, 王江,等. 铵浸钢渣熔融还原提铁制备微晶玻璃研究[J]. 人工晶体学报,2020, 49(5):909-912.
    [27]
    MOON E, CHOI Y C. Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation[J]. Cleaner Production, 2018, 180: 642-654.
    [28]
    王昭然, 于巧娣, 李灿华, 等. 钢渣-锰渣复混肥的制备、结构与性能[J]. 中国冶金, 2021, 31(1): 75-80.
    [29]
    KANG H J, AN K G, KIM D S. Utilization of steel slag as an adsorbent of ionic lead in wastewater[J]. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(11/12): 3015-3028.
    [30]
    于洋. 钢渣处理及资源化利用技术现状及展望[J]. 冶金动力, 2023(2): 115-118.
    [31]
    赵力杰, 张芳.钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020,34(增刊2): 1319-1322.
    [32]
    任旭, 王会刚, 吴跃东, 等. "双碳"目标下钢渣处理及资源化利用探讨[J]. 环境工程, 2022, 40(8): 220-224.
    [33]
    杨素洁, 张冰, 杨亚东, 等. 钢渣综合利用现状研究[J]. 化工矿物与加工, 2021(4): 31-34.
    [34]
    LACKNER K S, BUTT D P, WENDT C H. Progress on binding CO2 in mineral substrates[J]. Energy Conversion and Management, 1997, 38: S259-S264.
    [35]
    HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2005, 39(24): 9676-9682.
    [36]
    TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32: 528-539.
    [37]
    SAID A, LAUKKANEN T, JARVINEN M. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag[J]. Applied Energy, 2016, 177: 602-611.
    [38]
    Baotou Steel carbonization process steel slag comprehensive utilization project phase Ⅰ 100,000 tons of demonstration industrialization project started[N/OL]. World Metal Herald, 2021, 17: A05. (https://www.worldmetals.com.cn/viscms/qiyedongtai0275/20210817/255969.html).
    [39]
    LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: a review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093.
    [40]
    HUIJGEN W J J, COMANS R N J, et al. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2006, 40: 2790-2796.
    [41]
    ZHANG Y, YU L, CUI K, et al. Carbon capture and storage technology by steel-making slags: recent progress and future challenges[J]. Chemical Engineering Journal, 2023, 455: 140552.
    [42]
    CHANG R, CHOI D, KIM M H, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1659-1667.
    [43]
    YU J, WANG K. Study on characteristics of steel slag for CO2 capture[J]. Energy & Fuels, 2011, 25(11): 5483-5492.
    [44]
    白智韬, 岳昌盛, 邱桂博, 等. CO2气体对钢渣组成和性能的影响[J]. 环境工程, 2018, 36(12): 171-176.
    [45]
    TIAN S C, JIANG J G, LI K M, et al. Performance of steel slag in carbonation-calcination looping for CO2 capture from industrial flue gas[J]. RSC Advances, 2014, 4(14): 6858-6862.
    [46]
    SAID A, MATTILA O, ELONEVA S, et al. Enhancement of calcium dissolution from steel slag by ultrasound[J]. Chemical Engineering and Processing: Process Intensification, 2015, 89: 1-8.
    [47]
    LUO Y B, HE D F. Research status and future challenge for CO2 sequestration by mineral carbonation strategy using iron and steel slag[J]. Environmental Science and Pollution Research, 2021, 28(36): 49383-49409.
    [48]
    LEKAKH S N, ROBERTSON D G C, RAWLINS C H, et al. Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag[J]. Metallurgical and Materials Transactions B, 2008, 39(3): 484-492.
    [49]
    PAN S Y, CHIANG P C, CHEN Y H, et al. Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion[J]. Applied Energy, 2014, 113: 267-276.
    [50]
    CHANG E E, PAN S Y, CHEN Y H,et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012, 227/228: 97-106.
    [51]
    LI H W, TANG Z G, LI N, et al. Mechanism and process study on steel slag enhancement for CO2 capture by seawater[J]. Applied Energy, 2020, 276: 115515.
    [52]
    LI H W, ZHANG R J, WANG T Y, et al. Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2[J]. Energy, 2022, 238: 121861.
    [53]
    LEE Y H, EOM H, LEE S M, et al. Effects of pH and metal composition on selective extraction of calcium from steel slag for Ca(OH)2 production[J]. RSC Advances, 2021, 11(14): 8306-8313.
    [54]
    唐海燕, 孟文佳, 孙绍恒, 等. 炼钢炉渣的浸出和碳酸化[J]. 北京科技大学学报, 2014, 36(增刊1): 27-31.
    [55]
    ELONEVA S, TEIR S, SALMINEN J, et al. Steel converter slag as a raw material for precipitation of pure calcium carbonate[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7104-7111.
    [56]
    BAO W J, LI H Q, ZHANG Y. Selective leaching of steelmaking slag for indirect CO2 mineral sequestration[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2055-2063.
    [57]
    王晨晔, 包炜军, 许德华, 等. 低浓度碱介质中钢渣碳酸化反应特征[J]. 钢铁, 2016, 51(6): 87-93.
    [58]
    JO H, LEE M G, PARK J, et al. Preparation of high-purity nano-CaCO3 from steel slag[J]. Energy, 2017, 120: 884-894.
    [59]
    KODAMA S, NISHIMOTO T, YAMAMOTO N, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008, 33(5): 776-784.
    [60]
    TONG Z B, MA G J, ZHOU D, et al. The indirect mineral carbonation of electric arc furnace slag under microwave irradiation[J]. Scientific Reports, 2019, 9(1): 1-7.
    [61]
    田思聪.钢渣制备高效钙基CO2吸附材料用于钢铁行业碳捕集研究[D]. 北京: 清华大学, 2016.
    [62]
    TIAN S C, JIANG J G, YAN F,et al. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry[J].Green Chemistry, 2016, 18(14): 4022-4031.
    [63]
    SUN J, LIU W Q, HU Y C, et al. Acidification optimization and granulation of a steel-slag-derived sorbent for CO2 capture[J]. Chemical Engineering & Technology, 2018, 41(10): 2077-2086.
    [64]
    李凯敏. 钢渣制备高效钙基CO2吸附材料用于钢铁行业碳捕集研究[D]. 北京: 清华大学, 2017.
    [65]
    林七女, 李志峰, 管山吉, 等. 利用高炉渣生产水合二氧化硅的研究[J]. 中国资源综合利用, 2010(6): 33-34.
    [66]
    LIU W Z, SONG L, XU C C, et al.Combined synthesis of Li4SiO4 sorbent with high CO2 uptake in the direct carbonation of blast furnace slag process[J].Chem Eng J, 2019, 370: 71-80.
    [67]
    MATTILA H P, HUDD H, ZEVENHOVEN R. Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag[J]. Journal of Cleaner Production, 2014, 84: 611-618.
    [68]
    CHEN J, XING Y, WANG Y, et al. Application of iron and steel slags in mitigating greenhouse gas emissions: a review[J]. Science of the Total Environment, 2022, 844: 157041.
    [69]
    WANG J Y, ZHONG M, WU P F, et al. A review of the application of steel slag in CO2 fixation[J]. ChemBioEng Reviews, 2021, 8(3): 189-199.
    [70]
    KIM J, SOVACOOL B K, BAZILIAN M, et al. Decarbonizing the iron and steel industry: a systematic review of sociotechnical systems, technological innovations, and policy options[J]. Energy Research & Social Science, 2022, 89: 102565.
    [71]
    王瑞, 颜峰, 郭荣鑫, 等. 钢渣矿物碳酸化及生命周期评估研究进展[J]. 材料导报, 2023, 37(增刊2): 282-289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return