Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
Citation: LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015

MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS

doi: 10.13205/j.hjgc.202406015
  • Received Date: 2023-09-27
    Available Online: 2024-07-11
  • To improve the pollution of heavy metals and increase the utilization rate of solid waste, this study prepared geopolymers for the solidification of Zn2+, and Cd2+ under alkaline excitation conditions using ladle furnace slag (LFS) and fly ash (FA) as raw materials, and sodium hydroxide and water glass as alkaline activator. The effect of Zn2+ and Cd2+ doping on the strength of the cured body was investigated, and the immobilization effect of the geopolymer on Zn2+ and Cd2+ was evaluated by leaching experiments, and the immobilization mechanism was investigated by combining the characterization methods such as XRD, SEM-EDS, FT-IR, and XPS. The results showed that the LFS-FA-based geopolymer has good compatibility with Zn2+ and Cd2+, the compressive strength of the cured body containing 1.0% Cd2+ for 28 d could reach 40.62 MPa, and the curing rate of Zn2+ and Cd2+ in the hydration leaching experiments was over 99.6%; there was no new phase generated in the cured body after the incorporation of Zn2+ and Cd2+, and no chemical valence change occurred during the curing process. Metal ions can be effectively fixed in ladle furnace slag base polymer, mainly through physical encapsulation, and adsorption, while a small number of heavy metal ions exist in the curing body in the form of Si—O—M and Al—O—M (M=Zn, Cd) through chemical bonding.
  • loading
  • [1]
    ZHAO S Z, WEN Q, ZHANG X Y, et al. Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge[J]. Ceramics International, 2021, 47(15): 21599-21609.
    [2]
    WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053.
    [3]
    JI Z H, PEI Y S. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 2019, 231: 256-267.
    [4]
    DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35: 429-441.
    [5]
    ZHANG Y J, HAN Z C, HE P Y, et al. Geopolymer-based catalysts for cost-effective environmental governance: a review based on source control and end-of-pipe treatment[J]. Journal of Cleaner Production, 2020, 263: 121556.
    [6]
    ZHANG X L, YAO A L, CHEN L. A review on the immobilization of heavy metals with geopolymers[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 173-177.
    [7]
    徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111.
    [8]
    YI Y R, MA W Q, SIDIKE A, et al. Synergistic effect of hydration and carbonation of ladle furnace slag on cementitious substances[J]. Scientific Reports, 2022, 12(1): 14526.
    [9]
    BOUABIDI Z B, EL-NAAS M H, CORTES D, et al. Steel-Making dust as a potential adsorbent for the removal of lead (Ⅱ) from an aqueous solution[J]. Chemical Engineering Journal, 2018, 334: 837-844.
    [10]
    JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294.
    [11]
    WAN Q, RAO F, SONG S X, et al. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization[J]. Journal of Materials Research and Technology, 2019, 8(6): 5728-5735.
    [12]
    WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194.
    [13]
    IZQUIERDO M, QUEROL X, DAVIDOVITS J, et al. Coal fly ash-slag-based geopolymers: microstructure and metal leaching[J]. Journal of Hazardous Materials, 2009, 166(1): 561-566.
    [14]
    LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals[J]. Construction and Building Materials, 2021, 298: 123853.
    [15]
    EL-ESWED B I, YOUSEF R I, ALSHAAER M, et al. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers[J]. International Journal of Mineral Processing, 2015, 137: 34-42.
    [16]
    JI Z, PEI Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes-based geopolymer[J]. Journal of Hazardous Materials, 2020, 384: 121290.
    [17]
    国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准化出版社.
    [18]
    国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007[S].北京:中国环境科学出版社,2007.
    [19]
    环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法:HJ 557—2010[S]. 北京:中国环境科学出版社,2010.
    [20]
    ALVAREZ-AYUSO E, QUEROL X, PLANA F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. 2008, 154(1/2/3): 175-183.
    [21]
    王云燕, 柴立元, 王庆伟, 等. 重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究[C]//2008年全国湿法冶金学术会议, 2008: 196-204.
    [22]
    WANG Y, HAN F, MU J. Solidification/stabilization mechanism of Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827.
    [23]
    DERMATAS D, MENG X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394.
    [24]
    CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403.
    [25]
    WANG D, WANG Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals[J]. Cement and Concrete Research, 2022, 161:106945.
    [26]
    ZHENG L, WANG W, QIAO W, et al. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 642-648.
    [27]
    THO-IN T, SATA V, BOONSERM K, et al. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash[J]. Journal of Cleaner Production, 2018, 172: 2892-2898.
    [28]
    SWANEPOEL J C, STRYDOM C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148.
    [29]
    BOUAISSI A, LI L Y, ABDULLAH M M A B, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete[J]. Construction and Building Materials, 2019, 210(20): 198-209.
    [30]
    HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549.
    [31]
    JI Z, PEI Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals[J]. Chemosphere, 2019, 225: 579-587.
    [32]
    XINLIANG H, SHENBO Z, XIAOYING L, et al. FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013,(1):23-26.
    [33]
    ANDINI S, CIOFFI R, COLANGELO F, et al. Coal fly ash as raw material for the manufacture of geopolymer-based products[J]. Waste Management, 2008, 28(2): 416-423.
    [34]
    CHEN Y, CHEN F, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer[J]. Science of the Total Environment, 2022, 802: 149905.
    [35]
    BARSBAY M, KAVAKLı P A, TILKI S, et al. Porous cellulosic adsorbent for the removal of Cd (Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) ions from aqueous media[J]. Radiation Physics and Chemistry, 2018, 142: 70-76.
    [36]
    GUO X, ZHANG L, HUANG J, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Construction and Building Materials, 2017, 151: 394-404.
    [37]
    WAN J, ZHANG F, HAN Z, et al. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method[J]. Arabian Journal of Chemistry, 2021, 14(8): 103234.
    [38]
    GUO B, PAN D A, LIU B, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (83) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return