Citation: | JIN Hongqi, JIANG Rongjie, WANG Zirui, LI Luyang, LUO Jingyang. RESEARCH PROGRESS ON IMPACT AND REGULATION STRATEGIES OF TYPICAL ANTIBIOTICS ON ANAEROBIC DIGESTION EFFICIENCY OF SLUDGE: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 49-59. doi: 10.13205/j.hjgc.202407005 |
[1] |
ZHANG J, YANG Y, SUN C, et al. Sample preparation and instrumental detection methods for tetracycline antibiotics[J]. International Journal of Environmental Analytical Chemistry, 2023, 1-30.
|
[2] |
ZHOU H, CAO Z, ZHANG M, et al. Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge[J]. Science of the Total Environment 2021, 754: 142077.
|
[3] |
牟霄, 张崇淼, 李永强, 等. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375.
|
[4] |
张翔宇, 李茹莹, 季民. 污水生物处理中抗生素的去除机制及影响因素[J]. 环境科学, 2018, 39(11): 5276-5288.
|
[5] |
董亚荣, 张桂芹, 伊丽丽, 等. 氟喹诺酮类抗生素在污水处理厂中去除途径研究[J]. 河北环境工程学院学报, 2023, 33(6): 77-81.
|
[6] |
黄小丁. 克拉霉素对污泥厌氧消化的影响及控制研究[D]. 长沙:湖南大学, 2020.
|
[7] |
HUANG X, LIU X, CHEN F, et al. Clarithromycin affect methane production from anaerobic digestion of waste activated sludge[J]. Journal of Cleaner Production, 2020, 255: 120321.
|
[8] |
ZENG S, SUN J, CHEN Z, et al. The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production[J]. Environmental Research, 2021, 195: 110792.
|
[9] |
ZHI S, ZHANG K. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 1303-1315.
|
[10] |
YUN H, LIANG B, HE Z, et al. Insights into methanogenesis of mesophilic-psychrophilic varied anaerobic digestion of municipal sludge with antibiotic stress[J]. Journal of Environmental Management, 2023, 331: 117278.
|
[11] |
马晶伟, 易可为, 何秋来, 等. 氧氟沙星与聚苯乙烯微塑料复合污染对剩余污泥厌氧消化的影响[J]. 环境工程学报, 2022, 16(7): 2335-2346.
|
[12] |
XIANG Y, XIONG W, YANG Z, et al. Coexistence of microplastics alters the inhibitory effect of antibiotics on sludge anaerobic digestion[J]. Chemical Engineering Journal, 2023, 455: 140754.
|
[13] |
ZENG S, SUN J, LV X, et al. Impacts of norfloxacin on sewage sludge anaerobic digestion: bioenergy generation and potential environmental risks[J]. Results in Engineering, 2023, 20: 101392.
|
[14] |
ZHU K, ZHANG L, WANG X, et al. Inhibition of norfloxacin on anaerobic digestion: focusing on the recoverability and shifted microbial communities[J]. Science of the Total Environment 2021, 752, 141733.
|
[15] |
MA J, SHU L, MITCHELL S M, et al. Effects of different antibiotic operation modes on anaerobic digestion of dairy manure: focus on microbial population dynamics[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105521.
|
[16] |
马清佳, 田哲, 员建, 等. 9种抗生素对污泥高温厌氧消化的急性抑制[J]. 环境工程学报, 2018, 12(7): 2084-2093.
|
[17] |
LU X, ZHEN G, LIU Y, et al. Long-term effect of the antibiotic cefalexin on methane production during waste-activated sludge anaerobic digestion[J]. Bioresource Technology, 2014, 169: 644-651.
|
[18] |
RANI J, STABLEIN M J, PATEL K, et al. Monitoring effects of tetracycline and spectinomycin perturbations on biogas production and microbiome dynamics in a batch mesophilic anaerobic digester[J]. BioEnergy Research, 2024, 17(2):1263-1276.
|
[19] |
CHEN H, ZENG X, ZHOU Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 394: 122570.
|
[20] |
ZHU W, BU F, XU J, et al. Influence of lincomycin on anaerobic digestion: sludge type, biogas generation, methanogenic pathway and resistance mechanism[J]. Bioresource Technology, 2021, 329: 124913.
|
[21] |
LINS P, REITSCHULER C, ILLMER P. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion[J]. Bioresource Technology, 2015, 190: 148-158.
|
[22] |
BENERAGAMA N, LATEEF S A, IWASAKI M, et al. The combined effect of cefazolin and oxytertracycline on biogas production from thermophilic anaerobic digestion of dairy manure[J]. Bioresource Technology, 2013, 133: 23-30.
|
[23] |
WEILAND P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85: 849-860.
|
[24] |
LI B, KANG W, LIU H, et al. The antimicrobial activity of Cbf-K16 against MRSA was enhanced by β-lactamantibiotics through cell wall non-integrity[J]. Archives of Pharmacal Research, 2016, 39(7): 978-988.
|
[25] |
陈玉连. 深圳河湾流域表层沉积物中深古菌及产甲烷古菌群落结构的研究[D]. 广东:深圳大学, 2019.
|
[26] |
HILPERT R, WINTER J, HAMMES W, et al. The sensitivity of archaebacteria to antibiotics[J]. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I Abt Originale C: Allgemeine, Angewandte und Ökologische Mikrobiologie, 1981, 2(1): 11-20.
|
[27] |
CZATZKOWSKA M, HARNISZ M, KORZENIEWSKA E, et al. The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance[J]. Journal of Hazardous Materials, 2021(6): 125773.
|
[28] |
XIANG Y P, XIONG W P, XU R, et al. Metagenomic analysis reveals microbial metabolic potentials alterations under antibiotic stress during sludge anaerobic digestion [J]. Journal of Environmental Chemical Engineering, 2023, 11(5). 10.1016/j.cie.2022.108635.
|
[29] |
WANG X, LYU T, DONG R, et al. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion[J]. Journal of Environmental Management, 2022, 301: 113914.
|
[30] |
CETECIOGLU Z, INCE B, ORHON D, et al. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity[J]. Bioresource Technology, 2012, 114: 109-116.
|
[31] |
CHEN H, ZENG X, ZHOU Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 394: 122570.
|
[32] |
YUAN-Da, KONG, QIANG, et al. Pollutant removal and microorganism evolution of activated sludge under ofloxacin selection pressure[J]. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2017, 241: 849-856.
|
[33] |
叶超, 陈毅刚. 抗生素对活性污泥系统运行效果及代谢产物的影响:以氧氟沙星为例[J]. 环境科技, 2020, 33(4): 29-33.
|
[34] |
谢淑仪, 陈姗姗, 栾天罡. 电活性微生物胞外聚合物的特征与应用[J]. 微生物学报, 2023, 63(2): 540-552.
|
[35] |
ZHANG J, YUE Z, ZHOU Z, et al. Key microbial clusters and environmental factors affecting the removal of antibiotics in an engineered anaerobic digestion system[J]. Bioresource Technology, 2022, 348: 126770.
|
[36] |
朱艮苗, 杨维青. 群体感应系统对细菌耐药的调控作用[J]. 中国抗生素杂志, 2011, 36(1): 7-10.
|
[37] |
MAEDA T, SABIDI S, SANCHEZ-Torres V, et al. Engineering anaerobic digestion via optimizing microbial community: effects of bactericidal agents, quorum sensing inhibitors, and inorganic materials[J]. Applied Microbiology and Biotechnology, 2021, 105(20): 7607-7618.
|
[38] |
李宵宵.水热预处理强化高含固污泥厌氧消化的研究[D]. 太原:太原理工大学, 2020.
|
[39] |
陈仁杰, 董滨, 戴晓虎.水热技术在污泥无害化处理中的应用及展望[J]. 环境工程, 2023, 41(9): 201-209.
|
[40] |
柳珊, 郭春春, 马艳芳, 等.水热预处理对猪粪厌氧消化系统中磺胺嘧啶降解的影响[J].农业工程学报, 2023, 39(22): 188-198.
|
[41] |
SUN C, LI W, CHEN Z, et al. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions[J]. Environment International, 2019, 133: 105156.
|
[42] |
HE Y, TIAN Z, YI Q, et al. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment[J]. Water Research, 2020, 187: 116408.
|
[43] |
LI N, LIU H, XUE Y, et al. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment[J]. Science of the Total Environment, 2017, 581/582: 715-721.
|
[44] |
LI X, GUO S, PENG Y, et al. Anaerobic digestion using ultrasound as pretreatment approach: changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations[J]. Biochemical Engineering Journal, 2018, 139: 139-145.
|
[45] |
WU Y, WANG S, LIANG D, et al. Conductive materials in anaerobic digestion: from mechanism to application[J]. Bioresource Technology, 2020, 298: 122403.
|
[46] |
ZHANG X, LI R. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: degradation and solid-liquid distribution[J]. Bioresource Technology, 2018, 255: 266-272.
|
[47] |
LIU H, WANG X, QIN S, et al. Comprehensive role of thermal combined ultrasonic pre-treatment in sewage sludge disposal[J]. Science of the Total Environment, 2021, 789: 147862.
|
[48] |
ZHANG X, GANG D D, LEI X, et al. Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/peroxymonosulfate system: the key role of amorphous structure enhancing electron transfer[J]. Environmental Research, 2022, 214: 113964.
|
[49] |
XIE L, ZHU J, XIE J, et al. Underlying the inhibition mechanisms of sulfate and lincomycin on long-term anaerobic digestion: microbial response and antibiotic resistance genes distribution[J]. Science of the Total Environment, 2024, 915: 169837.
|
[50] |
ZGAJNAR Gotvajn A, DERCO J, VRABEL M, et al. Improvement of biotreatability of environmentally persistent antibiotic Tiamulin by O3 and O3/H2O2 oxidation processes[J]. Environment Technology, 2022, 43(15): 2319-2328.
|
[51] |
BOSEVSKI I, GOTVAJN A Z. The impact of single step ozonation of antibiotics-contaminated waste sludge to biogas production[J]. Chemosphere, 2021, 271: 129527.
|
[52] |
CHANDRASEKHAR K, AMULYA K, MOHAN S V. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation[J]. Waste Management, 2015, 45: 57-65.
|
[53] |
XUE W, ZHOU Q, LI F. Bacterial community changes and antibiotic resistance gene quantification in microbial electrolysis cells during long-term sulfamethoxazole treatment[J]. Bioresource Technology, 2019, 294: 122170.
|
[54] |
YAN W, XIAO Y, YAN W, et al. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review[J]. Chemical Engineering Journal, 2019, 358: 1421-1437.
|
[55] |
HU D, MIN H, WANG H, et al. Performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater[J]. Bioresource Technology, 2020, 305: 123070.
|
[56] |
孔峰, 戴雅, 刘阳, 等. 电化学预处理对后续厌氧消化工艺的作用研究[J]. 水处理技术, 2017, 43(2): 6.
|
[57] |
曹正操. 酶促集成原位高级厌氧消化去除抗生素及抗性基因规律研究[D]. 上海:上海理工大学, 2023.
|
[58] |
CHENG D, NGO H H, GUO W, et al. Improving sulfonamide antibiotics removal from swine wastewater by supplying a new pomelo peel derived biochar in an anaerobic membrane bioreactor[J]. Bioresource Technology, 2021, 319: 124160.
|
[59] |
Min ZHANG, Jianhua LI, Yuncai WANG, et al. Impacts of different biochar types on the anaerobic digestion of sewage sludge[J]. RSC Advances, 2019(9): 42375-42386.
|
[60] |
ZHOU H, CAO Z, ZHANG M, et al. Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge[J]. Science of the Total Environment, 2021, 754: 142077.
|
[61] |
NI Z, ZHOU L, LIN Z, et al. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: performance and microbial mechanism[J]. Journal of Hazardous Materials, 2023, 452: 131314.
|
[62] |
宋思奇. 碱热预处理-导电介质强化厌氧处理大观霉素菌渣效能与机制[D]. 哈尔滨:哈尔滨工业大学, 2023.
|
[63] |
ZHAO Q, LI M, ZHANG K, et al. Effect of ultrasound irradiation combined with ozone pretreatment on the anaerobic digestion for the biosludge exposed to trace-level levofloxacin: degradation, microbial community and ARGs analysis[J]. Journal of Environmental Management, 2020, 262: 110356.
|
[64] |
CHEN X, TANG R, WANG Y, et al. Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater[J]. Bioresource Technology, 2021, 320: 124356.
|