Citation: | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[1] |
WANG J, QIN X, GUO J, et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers[J]. Water Research, 2020, 183:116113.
|
[2] |
AZIZI S M M, HAFFIEZ N, ZAKARIA B S, et al. Thermal hydrolysis of sludge counteracts polystyrene nanoplastics-induced stress during anaerobic digestion[J]. ACS ES&T Engineering, 2022, 2(7):1306-1315.
|
[3] |
CESARO A, PIROZZI F, ZAFIRAKOU A, et al. Microplastics in sewage sludge destined to anaerobic digestion: the potential role of thermal pretreatment[J]. Chemosphere, 2022, 309:136669.
|
[4] |
张胜威. 微塑料对活性污泥系统及微生物菌群的影响研究[D].西安:西安理工大学, 2022.
|
[5] |
KOELMANS A A, MOHAMED NOR N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality[J]. Water Research, 2019, 155:410-422.
|
[6] |
WRIGHT R J, ERNI-CASSOLA G, ZADJELOVIC V, et al. Marine plastic debris: a new surface for microbial colonization[J]. Environmental Science & Technology, 2020, 54(19):11657-11672.
|
[7] |
CHANG X, FANG Y, WANG Y, et al. Microplastic pollution in soils, plants, and animals: a review of distributions, effects and potential mechanisms[J]. Science of the Total Environment 2022, 850:157857.
|
[8] |
SOL D, LACA A, LACA A, et al. Approaching the environmental problem of microplastics: importance of WWTP treatments[J]. Science of the Total Environment, 2020, 740:140016.
|
[9] |
ESTAHBANATI S, FAHRENFELD N L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water[J]. Chemosphere, 2016, 162:277-284.
|
[10] |
MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WWTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808.
|
[11] |
BRETAS ALVIM C, BES-PIÁ M A, MENDOZA-ROCA J A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants[J]. Chemical Engineering Journal, 2020, 402:126293.
|
[12] |
LEE H, KIM Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea[J]. Marine Pollution Bulletin, 2018, 137:1-8.
|
[13] |
SU Y, ZHANG Z, WU D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164:114968.
|
[14] |
EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59:526-536.
|
[15] |
ZHAO J, WANG D, LIU Y, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249:431-438.
|
[16] |
MA J, LIU H, ZHANG C, et al. Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer[J]. Science of the Total Environment, 2020, 720:137587.
|
[17] |
MA J, GONG Z, WANG Z, et al. Elucidating degradation properties, microbial community, and mechanism of microplastics in sewage sludge under different terminal electron acceptors conditions[J]. Bioresource Technology, 2022, 346:126624.
|
[18] |
牟文. 氯化汞对水生生物的毒性效应研究[D]. 武汉:华中师范大学, 2010.
|
[19] |
刘婷婷. 塑料地膜对微生物群落构建和演替的影响及塑料降解菌(群)筛选[D]. 杨凌:西北农林科技大学, 2021.
|
[20] |
NIU L, WANG Y, LI Y, et al. Occurrence, degradation pathways, and potential synergistic degradation mechanism of microplastics in surface water: a review[J]. Current Pollution Reports, 2023, 9(2):312-326.
|
[21] |
NARANCIC T, VERSTICHEL S, REDDY CHAGANTI S, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution[J]. Environmental Science & Technology, 2018, 52(18):10441-10452.
|
[22] |
NIU L, CHEN Y, LI Y, et al. Diversity, abundance and distribution characteristics of potential polyethylene and polypropylene microplastic degradation bacterial communities in the urban river[J]. Water Research, 2023, 232:119704.
|
[23] |
邓子昂. 微塑料污染的红外和拉曼光谱检测研究[D].昆明:云南师范大学, 2021.
|
[24] |
CHIENG B, IBRAHIM N, YUNUS W, et al. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets[J]. Polymers, 2014, 6(1):93-104.
|
[25] |
AMOBONYE A, BHAGWAT P, SINGH S, et al. Plastic biodegradation: frontline microbes and their enzymes[J]. Science of the Total Environment, 2021, 759:143536.
|
[26] |
BUCKNALL D G. Plastics as a materials system in a circular economy[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020, 378(2176):20190268.
|
[27] |
WANG D, ZHAO J, ZENG G, et al. How does poly(hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge?[J]. Environmental Science & Technology, 2015, 49(20):12253-12262.
|
[28] |
WANG Q, SUN J, ZHANG C, et al. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate[J]. Scientific Reports, 2016, 6(1).
|
[29] |
LEE Y K, MURPHY K R, HUR J. Fluorescence signatures of dissolved organic matter leached from microplastics: polymers and additives[J]. Environmental Science & Technology, 2020, 54(19):11905-11914.
|