Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
SU Junde, ZHAO Xiaojiong, LI Guoxia. ANALYSIS AND PREDICTION OF CARBON STORAGE EVOLUTION IN QILIAN MOUNTAIN NATIONAL PARK BASED ON InVEST-FLUS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 190-199. doi: 10.13205/j.hjgc.202407021
Citation: SU Junde, ZHAO Xiaojiong, LI Guoxia. ANALYSIS AND PREDICTION OF CARBON STORAGE EVOLUTION IN QILIAN MOUNTAIN NATIONAL PARK BASED ON InVEST-FLUS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 190-199. doi: 10.13205/j.hjgc.202407021

ANALYSIS AND PREDICTION OF CARBON STORAGE EVOLUTION IN QILIAN MOUNTAIN NATIONAL PARK BASED ON InVEST-FLUS MODEL

doi: 10.13205/j.hjgc.202407021
  • Received Date: 2023-09-05
    Available Online: 2024-12-02
  • As an important index of ecosystem service function, carbon storage is the result of the comprehensive effects of human activities, hydrothermal changes, and vegetation growth. As one of the key ecological protection areas in western China, the prediction and quantitative assessment of land use and carbon storage of Qilian Mountain National Park is of great significance for the realization of the dual carbon target and the scientific division of protection areas in western China. In this study, the InVEST model was used to reveal the carbon storage effect of land use change in Qilian Mountain National Park from 2000 to 2020, and the FLUS model was coupled to predict the impact of land use change and carbon storage in the study area in 2030. The results showed as follows: 1) from 2000 to 2020, grassland and wetland in the study area continued to decrease, forest land and water area continued to increase, cultivated land and unused land increased first and then decreased, and construction land decreased first and then increased. The carbon storage in the study area was relatively high on the whole, but with the change in land use, the carbon storage showed a slowly increasing trend, and the cumulative increase of carbon storage was 9.35×107 t in 20 years. 2) The spatial distribution pattern of carbon storage in the study area was lower in the west and higher in the east. The high accumulation area was mainly distributed in the central and eastern regions with large and contiguous ecological land, while the low accumulation area was mainly distributed in the western regions with high land development intensity and ecological land fragmentation. The main factors affecting the spatial distribution pattern of carbon storage were forestland and grassland with high carbon storage. 3) In the case of natural development, carbon storage in the study area will reach 9.4×108 t in 2030, increased by 9.30% compared with 2020. The main reason for this change is the large-scale increase in forest land. The results provide a scientific basis for the strict implementation of ecological protection policies such as the Qilian Mountain ecological red line, and provide a scientific reference for further optimizing the land use structure of the Qilian Mountain National Park and slowing down the loss of regional carbon stocks.
  • loading
  • [1]
    LIU X P, WANG S J, WU P J, et al. Impacts of urban expansion on terrestrial carbon storage in China[J]. Environment Science & Technology, 2019, 53(12): 6834-6844.
    [2]
    RIMAL B, SHARMA R, KUNWAR R, et al. Effect of land use and land cover change on ecosystem services in the Koshi River Basin, Easter Nepal[J]. Ecosystem Services, 2019, 38: 100963.
    [3]
    史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6):1010-1019.
    [4]
    王智. 基于CASA模型的杭州市森林碳储量时空变化及影响因子研究[D]. 杭州:浙江农林大学, 2021.
    [5]
    顾峰雪, 陶波, 温学发, 等. 基于CEVSA2模型的亚热带人工针叶林长期碳通量及碳储量模拟[J]. 生态学报, 2010, 30(23):6598-6605.
    [6]
    韩小雨. 基于DNDC模型模拟内蒙古不同草原类型的碳收支潜力[D]. 杨凌:西北农林科技大学, 2022.
    [7]
    邹桃红, 陈鹏, 刘家福, 等. 不同土地利用情景下四平市生态系统碳储量时空演变[J]. 中国环境科学, 2023, 43(10):5508-5518.
    [8]
    赵武生, 石培基. 基于InVEST模型的复合生态系统耦合协调关系研究:以兰西城市群为例[J]. 中国环境科学, 2023, 43(4):1883-1894.
    [9]
    林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测:以广东省为例[J]. 中国环境科学, 2022, 42(10):4827-4839.
    [10]
    张凯琪, 陈建军, 侯建坤, 等. 耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学, 2022, 42(6):2799-2809.
    [11]
    巩晟萱, 张玉虎, 李宇航. 基于PLUS-InVEST模型的京津冀碳储量变化及预测[J]. 干旱区资源与环境, 2023, 37(6):20-28.
    [12]
    李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1):378-387.
    [13]
    段璇瑜, 龚文峰, 孙雨欣, 等. 海南岛海岸带土地利用变化及其对碳储量时空演变的影响[J]. 水土保持通报, 2022, 42(5):301-311.
    [14]
    LIU W, LIU D F, LIU Y. Spatially heterogeneous response of carbon storage to land use changes in Pearl River Delta Urban Agglomeration, China[J]. Chinese Geographical Science, 2023, 33(2):271-286.
    [15]
    WANG B, MU C C, LU H C, et al. Ecosystem carbon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, northeast China[J]. Journal of Forest Research, 2022, 33(3):839-849.
    [16]
    STEPHEN P, ERIK N, DERRIC P, et al. The impact of land use change on ecosystem service, biodiversity and returns to landowners: a case study in the State of Minnesota[J]. Environmental and Resource Economics, 2011, 48:219-242.
    [17]
    JIANG W G, DENG Y, TANG Z H, et al. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST model[J]. Ecological Modelling, 2017, 345(2017):30-40.
    [18]
    孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1):41-51.
    [19]
    雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文), 2023, 31(2):300-314.
    [20]
    郭瑞, 刘蔚, 李宗省, 等. 祁连山甘肃片区土地利用变化特征及驱动力[J]. 中国沙漠, 2023, 43(3):188-198.
    [21]
    韩武宏. 基于InVEST模型的祁连山国家公园生态系统服务功能评估及其驱动力研究[D]. 兰州:西北师范大学, 2022.
    [22]
    张江蕾, 陈少辉. 祁连山自然保护区植被覆盖时空变化及地形分异研究[J]. 西部林业科学, 2023, 52(1):106-112

    , 121.
    [23]
    张海宁, 雍舒阳. 祁连山自然保护区与社区经济协调发展[J]. 经济研究导刊, 2022, 36(1):89-91.
    [24]
    刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10):4052-4065.
    [25]
    宋洁, 刘学录. 祁连山国家公园森林地上碳密度遥感估算[J]. 干旱区地理, 2021, 44(4):1045-1057.
    [26]
    朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2):222-229

    , 239.
    [27]
    刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.
    [28]
    杨安乐, 张小平, 李宗省, 等. 气候变化和人类活动对祁连山国家公园植被净初级生产力的定量影响[J]. 生态学报, 2023, 43(5):1784-1792.
    [29]
    邓喆. 基于土地利用变化的祁连山国家公园碳储量时空演变及预测[D]. 兰州:兰州大学, 2022.
    [30]
    张蕊, 曹静娟, 郭瑞英, 等. 祁连山北坡亚高山草地退耕还林草混合植被对土壤碳氮磷的影响[J]. 生态环境学报, 2014, 23(6):938-944.
    [31]
    张卓. 祁连山南坡生态系统碳源/汇特征及碳库影响因素研究[D]. 西宁:青海师范大学, 2022.
    [32]
    王琼琳. 基于InVEST模型的祁连山东部主要生态系统服务功能评价[D]. 北京:北京林业大学, 2021.
    [33]
    彭擎. 气候变化背景下祁连山国家公园生态环境模拟及预测[D].南京:南京信息工程大学, 2022.
    [34]
    YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
    [35]
    邓喆, 丁文广, 蒲晓婷, 等. 基于InVEST模型的祁连山国家公园碳储量时空分布研究[J]. 水土保持通报, 2022, 42(3):324-334

    , 396.
    [36]
    赵方圆, 王琼芳, 赵万奎, 等.甘肃省祁连山林区林地碳储量的分布特征和动态变化[J]. 湖北农业科学, 2023, 62(10):58-62

    , 73.
    [37]
    DENG L, LIU S G, KIM D G, et al. Past and future carbon sequestration benefits of China’s grain for green program[J]. Global Environmental Change, 2017, 47:13-20.
    [38]
    YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Date, 2021, 13(8):3907-3925.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return