Citation: | YUE Xiupeng, SUN Qianzhao, LÜ Mengxue, LI Jiaqi, WANG Andong, ZHANG Shuyan, XIE Tian, WANG Qing. EVALUATION ON EFFECTS OF DIFFERENT RESTORATION MEASURES ON SUAEDA SALSA WETLAND IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 8-16. doi: 10.13205/j.hjgc.202408002 |
[1] |
BARBIER E B, HACKER S D, KENNEDY C, et al. The value of estuarine and coastal ecosystem services[J]. Ecol Monogr, 2011, 81: 169-193.
|
[2] |
MURRAY N J, WORTHINGTON T A, BUNTING P, et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands[J]. Science, 2022, 376(6594): 744-749.
|
[3] |
吴靖梅, 陈秋健. 盐城湿地国家级珍禽自然保护区缓冲区射阳段生态修复模式及修复工程研究[J].环境科学与管理,2023,48(4):178-183.
|
[4] |
戈萍燕, 杨棠武, 张鹏,等. 基于鸟类栖息需求的盐城滨海湿地生态修复工程:以陈家港水库生态修复工程为例[J].湿地科学与管理, 2021, 17(4):33-36.
|
[5] |
顾艳. 几种小微湿地生态修复工程的生态效应分析[D]. 南京:南京大学, 2019.
|
[6] |
蒋卫国, 张泽, 凌子燕,等. 中国湿地保护修复管理经验与未来研究趋势[J]. 地理学报, 2023, 78(9):2223-2240.
|
[7] |
洪佳, 卢晓宁, 王玲玲. 1973—2013 年黄河三角洲湿地景观演变驱动力[J]. 生态学报, 2016, 36(4): 924-935.
|
[8] |
郭岳,徐清馨,佟守正,等.黄河三角洲滨海湿地退化原因分析及生态修复[J].吉林林业科技,2017,46(5):40-44.
|
[9] |
韩潇源. 黄河三角洲石油开发的环境影响定量评价研究[D]. 青岛: 中国海洋大学, 2009.
|
[10] |
刘峰. 黄河三角洲湿地水生态系统污染、退化与湿地修复的初步研究[D]. 青岛: 中国海洋大学, 2015.
|
[11] |
ZHANG X Q, FU X S, ZHANG L N. Ecological vulnerability assessment of estuarine wetland of the Yellow River Delta[J]. Journal of Interdisciplinary Mathematics, 2016, 19(4): 771-784.
|
[12] |
袁秀, 孙燕燕, 王计平, 等. 基于水鸟栖息地恢复的黄河三角洲水资源综合利用策略[J].资源科学, 2020, 42(1): 104-114.
|
[13] |
XIE T, CUI B, BAI J, et al. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2018, 103: 81-90.
|
[14] |
WANG Q, SHAO D D, CUI B S, et al. Artificial modifications lead to the formation of persistent bare patches in saltmarshes[J]. Frontiers in Marine Science, 2022. DOI: 10.3389/fmars.2022.1026736.
|
[15] |
刘康, 闫家国, 邹雨璇, 等. 黄河三角洲盐地碱蓬盐沼的时空分布动态[J]. 湿地科学, 2015, 13(6): 696-701.
|
[16] |
LIU J K, ENGEL B A, WANG Y, et al. Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta[J]. Science of the Total Environment, 2020, 702, 134889.
|
[17] |
WANG Q, CUI B S, LUO M, SHI W. Designing microtopographic structures to facilitate seedling re-establishment in degraded salt marshes[J]. Ecological Engineering, 2018,120: 266-273.
|
[18] |
WANG Q, CUI B S, LUO M. Effectiveness of microtopographic structure in species recovery in degraded salt marshes[J]. Marine Pollution Bulletin, 2018,133: 173-181.
|
[19] |
XIE T, CUI B, LI S, BAI J. Topography regulates edaphic suitability for seedling establishment associated with tidal elevation in coastal salt marshes[J]. Geoderma, 2019,337: 1258-1266.
|
[20] |
WANG Q, CUI B S, LUO M, et al. Microtopographic structures facilitate plant recruitment across a salt marsh tidal gradient[J]. Aquatic Conservation: Marine and Freshwater Ecosystem, 2019,29(8):1336-1346.
|
[21] |
唐娜,崔保山,赵欣胜.黄河三角洲芦苇湿地的恢复[J]. 生态学报, 2006, 26(8): 2616-2624.
|
[22] |
路峰,毕作林,谭学界.黄河三角洲芦苇湿地恢复评价[J]. 山东林业科技, 2007, (2): 52-54.
|
[23] |
FALK D A, PALMER M A, ZEDLER J B. Foundations of restoration ecology. Chapter 7: Topographic Heterogeneity Theory and Ecological Restoration[M]. Washington: Island Press, USA, 2006.
|
[24] |
WEI W, CHEN L D, YANG L, et al. Microtopography recreation benefits ecosystem restoration[J]. Environmental Science & Technology, 2012, 46: 10875-10876.
|
[25] |
BOUMA T J, DE VRIES M B, LOW E, et al. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations[J]. Hydrobiologia, 2005, 540: 259-274.
|
[26] |
BOUMA T, et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica[J]. Oikos, 2009, 1182: 260-268.
|
[27] |
BROOKS K L, MOSSMAN H L, CHITTY J L, et al. Limited vegetation development on a created salt marsh associated with over-consolidated sediments and lack of topographic heterogeneity[J]. Estuaries and Coasts, 2015, 38: 325-336.
|
[28] |
COURTWRIGHT J, FINDLAY S E G. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River[J]. Wetlands, 2011,31: 239-249.
|
[29] |
MOSER K, AHN C, NOE G. Characterization of microtopography and its influence on vegetation patterns in created wetlands[J]. Wetlands, 2007, 27: 1081-1097.
|
[30] |
张晗旭, 李馨宇, 崔保山,等. 黄河三角洲湿地生态修复工程对底栖动物的影响效果研究[J]. 环境工程, 2023, 41(1): 222-231.
|
[31] |
汪茂秋, 胡阳, 何宁,等. 湿地修复后大型底栖动物功能群的时空格局及其影响因素分析(英文)[J].Journal of Resources and Ecology, 2022, 13(6):1152-1164.
|
[32] |
BRULAND G L, RICHARDSON C J. Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland[J]. Restoration Ecology, 2005, 13: 515-523.
|
[33] |
VIVIAN-SMITH G. Microtopographic heterogeneity and florystic diversity in experimental wetlands communities[J]. Journal of Ecology, 1997, 85: 71-82.
|
[34] |
CUI B S, HE Q, ZHAO X S. Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity[J]. Acta Ecologica Sinica, 2008,28: 1408-1418.
|
[35] |
贺强. 黄河口盐沼植物群落的上行、种间和下行控制因子[D]. 上海:上海交通大学, 2012.
|
[36] |
彭斌,许伟,邵荣,等,石文艳.盐胁迫对不同生境种源盐地碱蓬幼苗生长、光合色素及渗透调节物质的影响[J]. 海洋湖沼通报,2017, 1: 63-72.
|
[37] |
尹建道,姜志林,曹斌,等.滨海盐渍土脱盐动态规律及其效果评价:野外灌水脱盐模拟实验研究[J].南京林业大学学报(自然科学版), 2002, 26(4): 15-18.
|