Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
YE Shunyun, DENG Hua, HU Lening, ZHANG Junyu, HUANG Ziwei, WANG Wei, HUANG Rui, FU Jiahui. ADSORPTION PERFORMANCE OF 2,4-DICHLOROPHENOL ON MICROPOROUS-RICH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 25-34. doi: 10.13205/j.hjgc.202408004
Citation: YE Shunyun, DENG Hua, HU Lening, ZHANG Junyu, HUANG Ziwei, WANG Wei, HUANG Rui, FU Jiahui. ADSORPTION PERFORMANCE OF 2,4-DICHLOROPHENOL ON MICROPOROUS-RICH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 25-34. doi: 10.13205/j.hjgc.202408004

ADSORPTION PERFORMANCE OF 2,4-DICHLOROPHENOL ON MICROPOROUS-RICH BIOCHAR

doi: 10.13205/j.hjgc.202408004
  • Received Date: 2023-04-28
    Available Online: 2024-12-02
  • In this paper, microporous-rich biomass charcoal (referred to as FWB) was prepared using waste fir wood chips as the raw material, and 2,4-dichlorophenol (2,4-DCP) was used as the target pollutant. The effects of different adsorption conditions on the adsorption performance of 2,4-DCP by FWB were studied, and the kinetic models (quasi-primary kinetics, quasi-secondary kinetics and intraparticle diffusion models), isothermal adsorption models (Langmuir, Freundlich and Temkin models) and the adsorption thermodynamic model (Van’t Hoff model) were used to fit the adsorption process and analyze its adsorption characteristics. The basic characteristics and adsorption mechanism of FWB were analyzed by SEM-EDS, BET, FTIR, XRD and XPS. The results showed that the adsorption process followed the quasi-secondary kinetic model and the Freundlich model, i.e. the adsorption of 2,4-DCP by FWB was based on the chemisorption of multilayers, with a maximum adsorption capacity of 138.05 mg/g. The adsorption process was a spontaneous heat absorption process. The biochar possesses a high specific surface area (326.770 m2/g), and an average pore size of 1.960. The total pore volume is 0.219 mL/g, and the micro-pore volume (0.178 mL/g) accounts for 81.279% of the total pore volume.
  • loading
  • [1]
    CAO W M, ZENG C J, GUO X F, et al. Enhanced electrochemical degradation of 2,4-dichlorophenol with the assist of hydrochar[J]. Chemosphere, 2020, 260: 127643.
    [2]
    傅德黔, 孙宗光, 章安安, 等. 我国水环境优先监测的现状与发展趋势[J]. 中国环境监测, 1996, 12(3): 1-3.
    [3]
    XIA X C, HUA C X, XUE S P, et al. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol[J]. Fish Shellfish Immunol, 2016, 55: 499-509.
    [4]
    胡梦杰, 钟磊, 蔡晓鲜, 等. 微生物降解石油烃的代谢机制及研究进展[J]. 环境工程, 2023, 41(2): 234-246.
    [5]
    孙素云, 李宝磊, 孔德勇, 等. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236.
    [6]
    HE P Y, ZHANG F Y, ZHANG Y J, et al. Multifunctional fly ash-based GO/geopolymer composite membrane for efficient oil-water separation and dye degradation[J]. Ceramics International, 2023, 42(2): 1855-1864.
    [7]
    QU Y, QIN L, YANG Y Z, et al. ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater[J]. Journal of Colloid and Interface Science, 2023, 630: 573-585.
    [8]
    杜明辉, 毕莹莹, 董莉, 等. 活性炭粒径对O3-AC处理有机废水的影响机制[J]. 环境工程, 2022, 40(4): 22-28.
    [9]
    陈启杰, 梁春艳, 赵雅兰, 等. 淀粉纳米晶接枝聚乙烯亚胺对阴离子染料的吸附[J]. 环境工程, 2023, 41(3): 57-64.
    [10]
    HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review[J]. Biochar, 2019, 1(1): 45-73.
    [11]
    刘雪平, 闫晓乐, 张焕, 等. 氯化铁改性椰壳活性炭去除2,4-二氯苯酚的吸附性能研究[J]. 化学试剂, 2022, 44(6): 835-840.
    [12]
    HU B W, AI Y J, JIN J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials[J]. Biochar, 2020, 2(1): 47-64.
    [13]
    刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能研究[J]. 中国环境科学, 2022, 42(1): 1-8.
    [14]
    王宇航, 俞伟, 赵思钰, 等. 改性生物炭对水环境中抗生素类药物的吸附研究进展[J]. 环境工程, 2021, 39(12): 91-99

    ,134.
    [15]
    ALSOHAIMI I H, AASSAR M R,ELZAIN A A, et al. Development of activated carbon-impregnated alginate * β-cyclodextrin/gelatin beads for highly performance sorption of 2,4-dichlorophenol from wastewater[J]. Journal of Materials Research and Technology, 2020, 9(3): 5144-5153.
    [16]
    林旭萌, 宿程远, 黄纯萍, 等. 污泥质生物炭对2,4-二氯苯酚的吸附性能[J]. 环境工程, 2019, 37(8): 154-158.
    [17]
    李尚真, 张治宏, 易晓辉, 等. 改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明B[J]. 环境化学, 2022, 41(3): 1-11.
    [18]
    孙兆楠, 潘玉瑾, 冷杰雯, 等. 活性黑KN-B在石墨烯表面的吸附行为[J]. 环境工程, 2021, 39(12): 114-119.
    [19]
    程文远, 李法云, 吕建华, 等. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834.
    [20]
    闫宇. 不同原料生物炭材料对雌激素的吸附[D]. 天津: 天津师范大学, 2022.
    [21]
    LIU W T, RUI D J, WANG Z B, et al. Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB[J]. Environmental Technology, 2021, 42(24): 3797-3806.
    [22]
    李莹. 杉木生物质炭特性及其对土壤碳稳定性影响的研究[D]. 福州: 福建农林大学, 2018.
    [23]
    WANG Z, REN D, WU J, et al. Study on adsorption-degradation of 2,4-dichlorophenol by modified biochar immobilized laccase[J]. International Journal of Environmental Science and Technology, 2021, 19(3): 1393-1406.
    [24]
    LIU Y Y, MA S Q, CHEN J W. A novel pyro-hydrochar via sequential carbonization of biomass waste: preparation, characterization and adsorption capacity[J]. Cleaner Product, 2018, 176: 187-195.
    [25]
    GONG Y X, CHEN Z L, BI L B, et al. Adsorption property and mechanism of polyacrylate-divinylbenzene microspheres for removal of trace organic micropollutants from water[J]. Science of the Total Environmental, 2021, 781: 146635.
    [26]
    ENSIYEH T, ALI F, EDER C L, et al. High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution[J]. Chemosphere, 2020, 295: 133850.
    [27]
    RUPREKHA S, RITUSMITA G, NEONJYOTI B, et al. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: optimization through response surface methodology[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5528-5539.
    [28]
    PAOLA T H, DISON S P F, JORDANA G, et al. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107408.
    [29]
    程钰莹, 王嘉铭, 王平, 等. 不同植物基生物炭对NH4+及Cd(Ⅱ)的吸附特性[J]. 中南林业科技大学学报, 2022, 42(3): 180-192.
    [30]
    YIN W J, ZHANG W, ZHAO C C, et al. Evaluation of removal efficiency of Ni(Ⅱ) and 2,4-DCP using in situnitrogen-doped biochar modified with aquatic animal waste[J]. Ocs Omega, 2019, 4(21): 19366-19374.
    [31]
    田宇. 改性生物炭活化过一硫酸盐去除2,4二氯苯酚的效能及机制研究[D]. 长春: 吉林大学, 2022.
    [32]
    GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602.
    [33]
    HU Y, ZHU Y, ZHANG Y, et al. An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption[J]. Bioresour Technol, 2019, 288: 121511.
    [34]
    MODENES AN, BAZARIN G, BORBA CE, et al. Tetracycline adsorption by tilapia fish bone-based biochar: mass transfer assessment and fixed-bed data prediction by hybrid statistical-phenomenological modeling[J]. Journal of Cleaner Production, 2021, 279: 123775.
    [35]
    DENG Y X, ZHANG T, NIE H Y, et al. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system[J]. Science of the Total Environment, 2019, 646: 1140-1154.
    [36]
    SHRAMANA R B, PAPITA D, ANIRUDDHA M, et al. Biochar from waste Sterculia foetida and its application as adsorbent for the treatment of PAH compounds: Batch and optimization[J]. Fuel, 2021, 306: 121623.
    [37]
    LIY H, PENGL F, LIW X. Adsorption behaviors on trace Pb2+ from water of biochar adsorbents from konjac starch[J]. Adsorption Science & Technology, 2020, 38(9/10): 344-356.
    [38]
    MENGZ Y, HOUX F, LIUY H, et al. Facile fabrication of iron-modified biochar as a renewable adsorbent for efficient siloxane (L2) removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105799.
    [39]
    YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science Pollution Research, 2018, 25(26): 25659-25667.
    [40]
    AMIR H O, MEHRDAD C, BAHAREH L, et al. Biochar obtained from cinnamon and cannabis as effective adsorbents for removal of lead ions from water[J]. Environmental Science and Pollution Research, 2019, 26(27): 27905-27914.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return