Citation: | ZHAO Lei, WANG Chuanyi, ZHANG Ting, LÜ Haiqin, YUAN Mingzhe. NH3-SCR PROPERTIES OF CeMn/ZSM-5 CATALYST MODIFIED BY ALKALI-TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 87-96. doi: 10.13205/j.hjgc.202408011 |
[1] |
余沃晖, 张盼, 赵一明, 等. 低温脱硝催化剂研究进展[J]. 无机盐工业, 2022, 54(10): 57-67
, 120.
|
[2] |
PAN W, HE J, HUANG G, et al. Research progress of the selective catalytic reduction with NH3 over ZSM-5 zeolite catalysts for NOx removal[J]. Catalysts, 2023, 13(10): 1381.
|
[3] |
喻成龙, 黄碧纯, 杨颖欣. 分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J]. 华南理工大学学报(自然科学版), 2015, 43(3): 143-150.
|
[4] |
骆中璨, 彭波, 夏龙贵, 等. 分子筛ZSM-5改性性能研究进展[J]. 江西化工, 2022, 38(5): 19-24.
|
[5] |
张乾蔚 王学涛. 不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究[J]. 燃料化学学报, 2019, 47(10): 1265-1272.
|
[6] |
CAO J, XING M, HAN Y, et al. Improving the hydrothermal stability of ZSM-5 zeolites in 1-Octene aromatization by sequential alkali treatment and phosphorus modification[J]. Catalysts, 2022, 12(12): 1629.
|
[7] |
CHENG S, LU S, LIU X, et al. Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt-Co catalyst for selective hydrogenation of cinnamaldehyde[J]. Molecules, 2023, 28(4): 1730.
|
[8] |
HAN D, CHEN Y LI C. The hydrothermal stability of the alkali-treated ZSM-5 and its catalytic performance in catalytic cracking of VGO[J]. Chemical Papers, 2018. 73(1): 215-220.
|
[9] |
JABŁOŃSKA M, GÓRA-MAREK K, BRUZZESE P C, et al. Influence of framework n(Si)/n(Al) ratio on the nature of Cu species in Cu-ZSM-5 for NH3-SCR-DeNOx[J]. ChemCatChem, 2022, 14(18): e202200627.
|
[10] |
ZHAO W, SHEN M, ZHU Y, et al. Insights into synergy of copper and acid sites for selective catalytic reduction of NO with ammonia over zeolite catalysts[J]. Catalysts, 2023, 13(2): 301.
|
[11] |
DOAN T, DANG A, NGUYEN D, et al. Hybrid Cu-Fe/ZSM-5 catalyst prepared by liquid ion-exchange for NOx removal by NH3-SCR process[J]. Journal of Chemistry, 2021: 1-15.
|
[12] |
LIU B, ZHENG K, LIAO Z, et al. Fe-encapsulated ZSM-5 zeolite with nanosheet-assembled structure for the selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2020, 59: 8592-9600.
|
[13] |
YUE Y, LIU B, LV N, et al. Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3[J]. ChemCatChem, 2019, 11(19): 4744-4754.
|
[14] |
WANG Y, JI X, MENG H, et al. Fabrication of high-silica Cu/ZSM-5 with confinement encapsulated Cu-based active species for NH3-SCR[J]. Catalysis Communications, 2020, 138: 105969.
|
[15] |
CHEN Z, LIU L, QU H, et al. The effect of CeO2 dispersity and active oxygen species on the SCR reaction over Fe-ZSM-5@Ce/meso-SiO2[J]. Catalysis Letters, 2020, 150: 514-523.
|
[16] |
PENG C, YAN R, PENG H, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures[J]. Journal of Hazardous Materials, 2020, 385: 121593.
|
[17] |
DEVI T G KANNAN M. X-ray diffraction (XRD) studies on the chemical states of some metal species in cellulosic chars and the Ellingham diagrams[J]. Energy & Fuels, 2007, 21(2): 596-601.
|
[18] |
ZHU L, ZHANG L, QU H, et al. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. Journal of Molecular Catalysis a-Chemical, 2015, 409: 207-215.
|
[19] |
杨全红, 郑经堂, 王茂章, 等. 活性炭纤维对NH3的吸附研究Ⅰ PAN-ACF孔径结构对NH3静态吸附的影响[J]. 新型碳材料, 1998(2): 44-49.
|
[20] |
孙爱明, 倪友明, 欧丽娟, 等. 碱处理和Zn改性ZSM-5分子筛上乙醇芳构化性能的研究[J]. 应用化工, 2015, 44(1): 95-98.
|
[21] |
袁方, 厉刚, 胡申林. 碱处理对ZSM-5分子筛膜结构及其催化性能的影响[J]. 石油学报(石油加工), 2014, 30(1): 140-144.
|
[22] |
刘冬梅, 华志远, 马健, 等. 碱处理ZSM-5分子筛上噻吩烷基化性能的研究[J]. 应用化工, 2014, 43(6): 1021-1024.
|
[23] |
JI J, TANG Y, HAN L, et al. Cerium manganese oxides coupled with ZSM-5: a novel SCR catalyst with superior K resistance[J]. Chemical Engineering Journal, 2022, 445: 136530.
|
[24] |
WANG L L, WANG M H, FEI Z Y, et al. Preparation of amorphous MnOx/TiO2 catalyst and its performance in low temperature NH3-SCR[J]. 燃料化学学报 (中英文), 2017, 45(8): 993-1000.
|
[25] |
DONG Y, JIN B, LIU S, et al. Abundant oxygen vacancies induced by the mechanochemical process boost the low-temperature catalytic performance of MnO2 in NH3-SCR[J]. Catalysts, 2022, 12(10): 1291.
|
[26] |
ZHANG S, LI H, ZHANG A, et al. Selective catalytic reduction of NOx by low-temperature NH3 over MnxZr1 mixed-oxide catalysts[J]. RSC advances, 2022, 12(3): 1341-1351.
|
[27] |
RAMANA S, RAO B G, VENKATASWAMY P, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2016, 415: 113-121.
|
[28] |
MU W, ZHU J, ZHANG S, et al. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catalysis Science & Technology, 2016, 6(20): 7532-7548.
|
[29] |
YANG S, WANG C, LI J, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study[J]. Applied Catalysis B: Environmental, 2011, 110: 71-80.
|
[30] |
郝广源 井宇. V-Ce/TiO2脱硝催化剂的SO2中毒机理研究[J]. 分子催化, 2023, 37(5): 428-438.
|
[31] |
YAO X, MA K, ZOU W, et al. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese Journal of Catalysis, 2017, 38(1): 146-159.
|
[32] |
TANG X, LI Y, HUANG X, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273.
|
[33] |
WANG X, DUAN R, LIU W, et al. The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx[J]. Applied Surface Science, 2020, 510: 145517.
|
[34] |
XIONG S, PENG Y, WANG D, et al. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance[J]. Chemical Engineering Journal, 2020, 387: 124090.
|
[35] |
BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. Journal of Catalysis, 2015, 325: 145-155.
|
[36] |
MURUGAN B, RAMASWAMY A, SRINIVAS D, et al. Nature of manganese species in Ce1-xMnxO2-δ solid solutions synthesized by the solution combustion route[J]. Chemistry of Materials, 2005, 17(15): 3983-3993.
|
[37] |
FAN Z, SHI J-W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: the promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348: 820-830.
|
[38] |
ZHANG D, ZHANG L, SHI L, et al. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013, 5(3): 1127-1136.
|
[39] |
崔立峰, 吕誉, 李云强, 等. CeO2/ZrO2对Cu-ZSM-5选择性催化还原NOx的反应活性及抗老化性能的影响[J]. 燃烧科学与技术, 2023, 29(6): 676-684.
|
[40] |
孙锦昌, 任翠涛, 赵明新, 等. Cu/Hβ催化剂NH3选择性催化还原NO性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 823-831.
|
[41] |
PENG C, YAN R, PENG H, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures[J]. J Hazard Mater, 2020, 385: 121593.
|
[42] |
CAO F, SU S, XIANG J, et al. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015, 139: 232-239.
|
[43] |
CAO F, XIANG J, SU S, et al. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Processing Technology, 2015, 135: 66-72.
|