Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013
Citation: XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013

PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL

doi: 10.13205/j.hjgc.202408013
  • Received Date: 2023-06-27
    Available Online: 2024-12-02
  • Atmospheric particulate matter concentration is closely related to environmental pollution, and accurate prediction of PM2.5 concentration is crucial for ecological environmental protection. Based on PM2.5 concentration and meteorological data from January 1, 2020, to December 31, 2021, in Xi’an, the PM2.5 concentration series was decomposed into multiple eigenmodal components by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) for the non-stationary and non-linear characteristics, and the sample entropy (SE) was used as an indicator to perform k-means clustering to reduce data noise. Then the reconstructed components were inputted into a bi-directional long short-term memory model (BiLSTM model), supplemented with the enhanced information of meteorological data and temporal data after unique thermal coding processing to output the prediction results of each component, finally superimposed to obtain the final PM2.5 concentration prediction results. The results showed that the CEEMDAN-SE-BiLSTM model had better prediction performance at four future moments (T+3, T+6, T+12, and T+24) compared with the XGBoost model, long short-term memory neural network (LSTM) model, BiLSTM model, and other combined models. The CEEMDAN-SE-BiLSTM model had better prediction performance, in terms of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were all decreased and at the moment of T+3, the determination coefficient (R2) was 0.993. The prediction accuracy was greatly improved. In addition, five cities (Zhengzhou, Chengdu, Beijing, Shanghai, and Guangzhou) were randomly selected nationwide to verify the model’s generalization, and the results showed that the prediction errors in the five cities were all small. The CEEMDAN-SE-BiLSTM model can be extended to other regions and cities and is capable of accurate short-term prediction.
  • loading
  • [1]
    WANG L F, SHI T, CHEN H Y. Air pollution and infant mortality: evidence from China[J]. Economics & Human Biology, 2023,49:101229.
    [2]
    GUO Q F, XI X, YANG S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4):626-634.
    [3]
    秦思达, 惠秀娟, 夏广锋, 等. 基于Model-3/CMAQ模式的本溪市大气细颗粒物数值模拟[J].环境科学研究, 2018, 31(1):53-60.
    [4]
    秦思达, 王帆, 王堃, 等. 基于WRF-CMAQ模型的辽宁中部城市群PM2.5化学组分特征[J].环境科学研究, 2021,34(6):1277-1286.
    [5]
    BHUVANESHWARI K S, UMA J, LOGESWARAN M N A, et al. Gaussian support vector machine algorithm based air pollution prediction[J]. CMC-Computers, Materials & Continua, 2022, 71(1):683-695.
    [6]
    谢永华, 张鸣敏, 杨乐, 等. 基于支持向量机回归的城市PM2.5浓度预测[J]. 计算机工程与设计,2015, 36(11):3106-3111.
    [7]
    杨思琪, 赵丽华. 随机森林算法在城市空气质量预测中的应用[J]. 统计与决策, 2017(20):83-86.
    [8]
    任才溶,谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用,2019,55(2):213-220.
    [9]
    彭斯俊, 沈加超, 朱雪. 基于ARIMA模型的PM2.5预测[J].安全与环境工程,2014,21(6):125-128.
    [10]
    严宙宁, 牟敬锋, 赵星, 等. 基于ARIMA模型的深圳市大气PM2.5浓度时间序列预测分析[J]. 现代预防医学,2018,45(2):220-223.
    [11]
    黄春桃, 范东平, 卢集富, 等. 基于深度学习模型的广州市大气PM2.5和PM10浓度预测[J]. 环境工程,2021,39(12):135-140.
    [12]
    ZHOU X X, XU J J, ZENG P, et al. Air pollutant concentration prediction based on GRU method[J]. Journal of Physics: Conference Series, 2019, 1168(3):032058.
    [13]
    孙宝磊, 孙暠, 张朝能, 等.基于BP神经网络的大气污染物浓度预测[J]. 环境科学学报, 2017, 37(5):1864-1871.
    [14]
    艾洪福, 石莹. 基于BP人工神经网络的雾霾天气预测研究[J]. 计算机仿真, 2015, 32(1):402-405

    ,415.
    [15]
    陈建坤, 牟凤云, 张用川, 等. 基于多机器学习模型的逐小时PM2.5浓度预测对比[J]. 南京林业大学学报(自然科学版), 2022, 46(5):152-160.
    [16]
    LI X, PENG L,YAO X J, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J].Environmental Pollution, 2017, 231(1):997-1004.
    [17]
    KRISTIANI E, LIN H, LIN J R, et al. Short-term prediction of PM2.5 using LSTM deep learning methods[J]. Sustainability, 2022, 14(2068):2068.
    [18]
    CHEN P, NIU A, JIANG W, et al. Air pollutant prediction: comparisons between LSTM, light GBM and random forests(Article)[J]. Journal of Environmental Protection and Ecology, 2019, 20(3):1059-1067.
    [19]
    LIU B C, GUO X L, LAI M Z, et al. Air pollutant concentration forecasting using long short-term memory based on wavelet transform and information gain: a case study of Beijing[J]. Computational Intelligence and Neuroscience, 2020(1):8834699.
    [20]
    YU L, WU C X, XIONG N N. An intelligent data analysis system combining ARIMA and LSTM for persistent organic pollutants concentration prediction[J]. Electronics, 2022, 11(4):652.
    [21]
    叶如珊, 王海波. 基于CNN-BiLSTM模型的PM2.5浓度预测方法[J]. 数学的实践与认识, 2022, 52(7):181-188.
    [22]
    MOHAN A S, ABRAHAM L. An ensemble deep learning model for forecasting hourly PM2.5 concentrations[J]. IETE Journal of Research, 2022:1-14.
    [23]
    MIRZADEH S M, NEJADKOORKI F, MIRHOSEINI S A, et al. Developing a wavelet-AI hybrid model for short- and long-term predictions of the pollutant concentration of particulate matter10[J]. International Journal of Environmental Science and Technology, 2022, 19(1):209-222.
    [24]
    HUANG Y, YU J H, DAI X H, et al. Air-quality prediction based on the EMD-IPSO-LSTM combination model[J]. Sustainability, 2022, 14(4889):4889.
    [25]
    WANG X W, LIU W J, WANG Y N, et al. A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM[J]. Fuel, 2022, 310.
    [26]
    WANG J Q,TANG J L,GUO K, et al. Green bond index prediction based on CEEMDAN-LSTM[J].Frontiers in Energy Research,2022,9.
    [27]
    YANG Z Z,ZOU L,XIA J, et al. Inner dynamic detection and prediction of water quality based on CEEMDAN and GA-SVM models[J].Remote Sensing,2022,14(7):1714.
    [28]
    PENG R, KUN D, XU L, et al. Short-term load forecasting based on CEEMDAN and transformer[J]. Electric Power Systems Research,2023,214:108885.
    [29]
    LIU W F, JIANG Y, XU Y S. A super fast algorithm for estimating sample entropy[J]. Entropy, 2022, 24(4):524.
    [30]
    杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14.
    [31]
    SUN Y, LIU J W. AQI prediction based on CEEMDAN-ARMA-LSTM[J]. Sustainability, 2022,14(12182):12182.
    [32]
    DUAN H M, LUO X L. A novel multivariable grey prediction model and its application in forecasting coal consumption[J]. ISA Transactions, 2022, 120:110-127.
    [33]
    郑霞, 胡东滨,李权. 基于小波分解和SVM的大气污染物浓度预测模型研究[J]. 环境科学学报, 2020, 40(8):2962-2969.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return