Citation: | ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015 |
[1] |
李浩, 黄慧群. 餐厨垃圾与污泥厌氧发酵动力学特性分析[J]. 环境工程, 2018,36(7): 107-112.
|
[2] |
LIN Q S, DONG X L, LUO J M, et al. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: performance, microbial community dynamics and metabolism[J]. Bioresource Technology, 2022,361: 127736.
|
[3] |
SRISOWMEYA G, CHAKRAVARTHY M, NANDHINI D G. Critical considerations in two-stage anaerobic digestion of food waste: a review[J]. Renewable and Sustainable Energy Reviews, 2020,119: 109587.
|
[4] |
LIANG T, ELMAADAWY K, LIU B C, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances[J]. Process Safety and Environmental Protection, 2021,145: 321-339.
|
[5] |
CHENG B Y, JIANG W, ZHANG D, et al. Thiosulfate-assisted Fe2+/persulfate pretreatment effectively alleviating iron dose and enhancing biotransformation of waste activated sludge into high-value liquid products[J]. Chemosphere, 2022,303: 135106.
|
[6] |
HUANG X D, ZHAO J W, XU Q X, et al. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue[J]. Bioresource Technology, 2019,274: 430-438.
|
[7] |
KAYHANIAN M, RICH D. Sludge management using the biodegradable organic fraction of municipal solid waste as primary substrat[J]. Water Environment Research, 1996,68(2): 240-252.
|
[8] |
MORALES-Polo C, DEL Mar Cledera-Castro M, MORATILLA SORIA B Y. Reviewing the anaerobic digestion of food waste: from waste generation and anaerobic process to its perspectives[J]. Applied Sciences, 2018,8(10): 1804.
|
[9] |
付胜涛, 于水利, 严晓菊, 等. 剩余活性污泥和厨余垃圾的混合中温厌氧消化[J]. 环境科学, 2006,27(7): 1459-1463.
|
[10] |
张月, 李勇, 郭志伟, 等. 市政污泥与餐厨垃圾混合两相厌氧消化研究[J]. 环境科学与技术, 2016,39(3): 91-94
, 110.
|
[11] |
WU Q L, GUO W Q, ZHENG H S, et al. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses[J]. Bioresource Technology, 2016,216: 653-660.
|
[12] |
李秋实, 郭祥, 刘彬, 等. 市政污泥与玉米秸秆混合高温厌氧发酵产甲烷研究[J]. 环境工程, 2022,40(7): 139-145.
|
[13] |
CHENG J, DING L K, LIN R C, et al. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance[J]. Applied Energy, 2016,184: 1-8.
|
[14] |
任南琪, 赵丹, 陈晓蕾, 等. 厌氧生物处理丙酸产生和积累的原因及控制对策[J]. 中国科学(B辑), 2002,32(1): 83-89.
|
[15] |
YANG X, LIU X, CHEN S, et al. Volatile fatty acids production from codigestion of food waste and sewage sludge based on β-cyclodextrins and alkaline treatments[J]. Archaea, 2016,2016: 1-8.
|
[16] |
YU W B, WEN Q Q, YANG J K, et al. Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering[J]. Water Research, 2019,148: 60-69.
|
[17] |
FENG L Y, CHEN Y G, ZHENG X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH[J]. Environmental Science & Technology, 2009,43(12): 4373-4380.
|
[18] |
YIN J, YU X Q, ZHANG Y, et al. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: effect of redox potential and inoculum[J]. Bioresource Technology, 2016,216: 996-1003.
|
[19] |
LUO J Y, WU L J, FENG Q, et al. Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors[J]. Biochemical Engineering Journal, 2019,141: 71-79.
|
[20] |
ZHANG P, CHEN Y G, ZHOU Q. Effects of pH on the Waste Activated Sludge Hydrolysis and Acidification under Mesophilic and Thermophilic Conditions[C]. IEEE, 2009.
|
[21] |
ZHANG Z S, GUO Y D, GUO L, et al. Elucidating salinity adaptation and shock loading on denitrification performance: focusing on microbial community shift and carbon source evaluation[J]. Bioresource Technology, 2020,305:123030.
|
[22] |
王攀, 邱银权, 陈锡腾, 等. 以餐厨垃圾水解酸化液为碳源合成PHA研究[J]. 环境工程, 2018,36(6): 145-149.
|
[23] |
ZIGANSHIN A M, LIEBETRAU J, PRÖTER J, et al. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials[J]. Applied Microbiology and Biotechnology, 2013,97(11): 5161-5174.
|
[24] |
KABISCH A, OTTO A, KONIG S, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803[J]. ISME J, 2014,8(7): 1492-1502.
|
[25] |
李静, 张宝刚, 刘青松, 等. 导电材料强化微生物直接种间电子传递产甲烷的研究进展[J]. 微生物学报, 2021,61(6): 1507-1524.
|
[26] |
DUAN X, LUO J Y, SU Y, et al. Proteomic profiling of robust acetoclastic methanogen in chrysene-altered anaerobic digestion: global dissection of enzymes[J]. Water Research, 2023,233: 119817.
|