Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019
Citation: LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019

STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN

doi: 10.13205/j.hjgc.202408019
  • Received Date: 2023-09-06
    Available Online: 2024-12-02
  • The risk screening and intervention values for soil contamination of development land can be used for decision-making on soil pollution risk control and remediation. This study was based on the basic theory and methodology of soil pollution health risk assessment for global development land. It involved selecting multi-medium exposure assessment models, determining localized model parameters, calculating model theoretical values, and correcting model theoretical values. Based on the characteristics of land use for development land and the types of pollutants in typical industries in Shenzhen, the soil risk screening and intervention values for 68 pollutants under the first and second types of land use were established. The classification differences of development land in major countries and regions were analyzed. The study showed that the second-category land screening value of pollutants was higher than the first-category land, and the intervention value of the same pollutant was higher than the screening value. The screening and intervention values were within the representative range of similar soil pollution risk control standards at home and overseas. The main reasons for the differences in screening values at home and overseas are the selection of exposure assessment models, receptor exposure values, soil properties, air characteristics, pollutant toxicity parameters, and the correction of theoretical calculation values for the model. The results will play a guiding role in risk screening and control for soil contamination of development land in Shenzhen.
  • loading
  • [1]
    生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准:GB 36600—2018[S]. 北京: 生态环境部, 2018.
    [2]
    United States Environmental Protection Agency (US EPA). Soil Screening Guidance: Technical Background Document (EPA/540/R95/128)[R]. Washington DC: US Environmental Protection Agency, 1996.
    [3]
    United States Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24)[R]. Washington DC: US Environmental Protection Agency, 2002.
    [4]
    American Society for Testing of Materials (ASTM). Standard Guide for Risk-based Corrective Action Applied at Petroleum Release Sites (E1739-95)[R]. Conshohocken: American Society for Testing of Materials, 1995.
    [5]
    American Society for Testing of Materials (ASTM). Standard Guide for Risk-based Corrective Action (E2081-00)[R]. Conshohocken: American Society for Testing of Materials, 2000.
    [6]
    Department for Environment, Food and Rural Affairs and Environment Agency (DEFRA and EA). The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms[R]. Bristol: Department for Environment, Food and Rural Affairs and Environment Agency, 2002.
    [7]
    Environment Agency (EA). Updated Technical Background to the CLEA Model (SC050021/R3)[R]. Bristol: Environment Agency, 2009.
    [8]
    Contaminated Land: Applications in Real Environments (CL: AIRE). SP1010-Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination[R]. London: Contaminated Land: Applications in Real Environments, 2014.
    [9]
    Ministry of Housing, Spatial Planning and the Environment (VROM). Circular on Target Values and Intervention Values for Soil Remediation[R]. Amsterdam: Ministry of Housing, Spatial Planning and the Environment, 2000.
    [10]
    Canadian Council of Ministers of the Environment (CCME). Interim Canadian Environmental Quality Criteria for Contaminated Sites[R]. Winnipeg: Canadian Council of Ministers of the Environment, 1991.
    [11]
    Canadian Council of Ministers of the Environment (CCME). A Protocol for Deriving Environmental and Human Health Soil Quality Guidelines[R]. Winnipeg: Canadian Council of Ministers of the Environment, 1996.
    [12]
    Canadian Council of Ministers of the Environment (CCME). A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines[R]. Winnipeg: Canadian Council of Ministers of the Environment, 2006.
    [13]
    北京市质量技术监督局. 建设用地土壤环境风险评价筛选值: DB11/T 811—2011[S]. 北京: 北京市质量技术监督局, 2011.
    [14]
    上海市环境保护局. 上海市建设用地土壤环境健康风险评估筛选值[S]. 上海: 上海市环境保护局, 2015.
    [15]
    重庆市质量技术监督局. 场地土壤环境风险评估筛选值: DB50/T 723—2016[S]. 重庆: 重庆市质量技术监督局, 2016.
    [16]
    深圳市市场监督管理局. 建设用地土壤污染风险筛选值和管制值: DB4403/T 67—2020[S]. 深圳: 深圳市市场监督管理局, 2020.
    [17]
    江西省市场监督管理局. 建设用地土壤污染风险管控标准(试行): DB36/1282—2020[S]. 南昌: 江西省市场监督管理局, 2020.
    [18]
    广西壮族自治区市场监督管理局. 建设用地土壤污染风险筛选值和管制值: DB45/T 2556—2022[S]. 南宁: 广西壮族自治区市场监督管理局, 2022.
    [19]
    河北省市场监督管理局. 建设用地土壤污染风险筛选值: DB13/T 5216—2022[S]. 石家庄: 河北省市场监督管理局, 2022.
    [20]
    四川省市场监督管理局. 四川省建设用地土壤污染风险管控标准: DB51/2978—2023[S]. 成都: 四川省市场监督管理局, 2023.
    [21]
    宋静, 陈梦舫, 骆永明, 等. 制订我国污染场地土壤风险筛选值的几点建议[J]. 环境监测管理与技术, 2011,23(3):26-33.
    [22]
    张斌, 邹卉, 肖杰, 等. RAG-C和RBCA模型中场地特征参数的差异及其启示[J]. 环境工程, 2015,33(9):130-133

    ,99.
    [23]
    骆永明, 夏家淇, 章海波, 等.中国土壤环境质量基准与标准制定的理论和方法[M]. 北京: 科学出版社, 2015.
    [24]
    陈梦舫, 韩璐, 罗飞. 污染场地土壤与地下水风险评估方法学[M]. 北京: 科学出版社, 2017.
    [25]
    陈梦舫, 韩璐, 罗飞. 污染场地土壤与地下水精细化风险评估理论与实践[M]. 北京: 科学出版社, 2022.
    [26]
    赵彬, 彭天玥, 张昊, 等. 汞污染场地特征识别与健康风险研究[J]. 环境工程, 2023,41(4):205-212.
    [27]
    生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 生态环境部, 2019.
    [28]
    生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(征求意见稿)编制说明[R]. 北京: 生态环境部, 2018.
    [29]
    United States Environmental Protection Agency (US EPA). Integrated Risk Information System (IRIS)[EB/OL]. http://www.epa.gov/IRIS/. 2019-5-21.
    [30]
    United States Environmental Protection Agency (US EPA). Regional Screening Levels for Chemical Contaminants at Superfund Sites[EB/OL]. https://www.epa.gov/risk/regional-screening-levels-rsls. 2019-5-21.
    [31]
    Texas Commission on Environmental Quality (TCEQ). Texas Risk Reduction Program: Protective Concentration Levels[EB/OL]. http://www.tceq.texas.gov/remediation/trrp/trrppcls.html. 2018-4-18.
    [32]
    陈梦舫, 罗飞, 韩璐, 等. 污染场地健康与环境风险评估软件(HERA, Version 1.1)[CP]. 南京: 中国科学院南京土壤研究所, 2014.
    [33]
    香港环境保护署. 按风险厘定的土地污染整治标准的使用指引[S]. 香港: 香港环境保护署, 2007.
    [34]
    住房和城乡建设部. 城市用地分类与规划建设用地标准: GB 50137—2011[S]. 北京: 住房和城乡建设部, 2011.
    [35]
    深圳市人民政府. 深圳市城市规划标准与准则[S]. 深圳: 深圳市人民政府, 2013.
    [36]
    周友亚, 颜增光, 周光辉, 等. 制定场地土壤风险评价筛选值中关注污染物的预筛选方法[J]. 环境工程技术学报, 2011,1(3):264-269.
    [37]
    杨龙, 孙长虹, 李珊珊, 等. 典型行业环境地表灰尘重金属污染比较研究[J]. 环境工程, 2015,33(2):122-125.
    [38]
    刘臣辉, 付玲玲, 申雨桐, 等. 欧盟水框架指令优先污染物筛选方法的应用[J]. 环境工程, 2015,33(10):126-129.
    [39]
    深圳市人居环境委员会. 深圳市建设用地土壤环境调查评估工作指引(试行)[S]. 深圳: 深圳市人居环境委员会, 2018.
    [40]
    罗飞, 宋静, 潘云雨, 等. 典型滴滴涕废弃生产场地污染土壤的人体健康风险评估研究[J]. 土壤学报, 2012,49(1):26-35.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return