Citation: | HUANG Jialiang, MU Lan, WU Wanting, PENG Hao, TAO Junyu, SONG Yingjin, SHI Yan, CHEN Guanyi. SCREENING AND HYDROGEN PRODUCTION PERFORMANCE OF FOUR MIXED PHOTOSYNTHETIC ANAEROBIC HYDROGEN-PRODUCING BACTERIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 301-310. doi: 10.13205/j.hjgc.202409030 |
[1] |
AHMAD T, ZHANG D D. A critical review of comparative global historical energy consumption and future demand: the story told so far[J]. Energy Reports, 2020, 6: 1973-1991.
|
[2] |
FAWZY S, OSMAN A I, DORAN J, et al. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 2069-2094.
|
[3] |
SAYED E T, WILBERFORCE T, ELSAID K, et al. A critical review on environmental impacts of renewable energy systems and mitigation strategies: wind, hydro, biomass and geothermal[J]. Science of the Total Environment, 2021, 766: 144505.
|
[4] |
CAPURSO T, STEFANIZZI M, TORRESI M, et al. Perspective of the role of hydrogen in the 21st century energy transition[J]. Energy Conversion and Management, 2022, 251: 114898.
|
[5] |
FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13771-13802.
|
[6] |
OSMAN A I, MEHTA N, ELGARAHY A M, et al. Hydrogen production, storage, utilisation and environmental impacts: a review[J]. Environmental Chemistry Letters, 2021, 20(1): 153-188.
|
[7] |
AGENCY I E. Global Hydrogen Review 2021[M]. 2021.
|
[8] |
AGENCY I E. Global Energy and Climate Model Documentation 2022.[M]. 2022.
|
[9] |
AMIN M, SHAH H H, FAREED A G, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change[J]. International Journal of Hydrogen Energy, 2022, 47(77): 33112-33134.
|
[10] |
XU X X, ZHOU Q, YU D. The future of hydrogen energy: bio-hydrogen production technology[J]. International Journal of Hydrogen Energy, 2022, 47(79): 33677-33698.
|
[11] |
GOVEAS L C, NAYAK S, KUMAR P S, et al. Recent advances in fermentative biohydrogen production[J]. International Journal of Hydrogen Energy, 2023, 54, 200-217.
|
[12] |
ŁUKAJTIS R, HOŁOWACZ I, KUCHARSKA K, et al. Hydrogen production from biomass using dark fermentation[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 665-694.
|
[13] |
ZHANG Q G, ZHU S G, ZHANG Z P, et al. Enhancement strategies for photo-fermentative biohydrogen production: a review[J]. Bioresource Technology, 2021, 340: 125601.
|
[14] |
ARGUN H, KARGI F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7443-7459.
|
[15] |
TREVISAN V, MONTEGGIA L O, DOS SANTOS DELABARY H. Methodology to determine the specific hydrogenic activity (SHA) of waste sludges[J]. International Journal of Hydrogen Energy, 2015, 40(32): 9977-9981.
|
[16] |
MONTIEL-CORONA V, REVAH S, MORALES M. Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor-indoor conditions[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9096-9105.
|
[17] |
WANG R Q, CUI C W, JIN Y R, et al. Photo-fermentative hydrogen production from mixed substrate by mixed bacteria[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13396-13400.
|
[18] |
ZHAO Y X, CHEN Y G. Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge[J]. Environmental Science Technology, 2011, 45(19): 8589-8595.
|
[19] |
MONTIEL CORONA V, LE BORGNE S, REVAH S, et al. Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate[J]. Bioresource Technology, 2017, 226: 238-246.
|
[20] |
CHEN X, LV Y, LIU Y, et al. The hydrogen production characteristics of mixed photoheterotrophic culture[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4840-4847.
|
[21] |
陈鑫. 混合光合产氢菌群的筛选及其产氢特性的研究[D].太原:太原理工大学, 2017.
|
[22] |
XIANG G N, ZHANG Q G, LI Y M, et al. Enhancement on photobiological hydrogen production from corn stalk via reducing hydrogen pressure in bioreactors by way of phased decompression schemes[J]. Bioresource Technology, 2023, 385: 129377.
|
[23] |
ZHANG Z P, AI F, ZHANG H, et al. Synergetic effect evaluation of light and mass transfer enhancement strategies on photo fermentative biohydrogen production process: illumination, shake, and high solid level[J]. Energy, 2023, 269: 126841.
|
[24] |
LEE H S, RITTMANN B E. Evaluation of metabolism using stoichiometry in fermentative biohydrogen[J]. Biotechnology Bioengineering, 2009, 102(3): 749-758.
|
[25] |
RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. 北京:高等教育出版社,2014.
|
[26] |
郭南飞, 韩智勇, 史瑞, 等. 农村垃圾厌氧-准好氧时空联合生物反应器中微生物群落分析[J]. 农业工程学报, 2020, 36(19): 200-208.
|
[27] |
王阶平, 刘波, 刘国红, 等. 芽胞杆菌系统分类研究最新进展[J]. 福建农业学报, 2017, 32(7): 784-800.
|
[28] |
布坎南 R E, 吉本斯 N E. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 22-28.
|
[29] |
LIU S Y, SHEN F H, NADEEM F, et al. Triggering photo fermentative biohydrogen production through NiFe2O4 photo nanocatalysts with various excitation sources[J]. Bioresource Technology, 2023, 385: 129378.
|
[30] |
LIU Z H, ZHOU A J, LIU H Y, et al. Extracellular polymeric substance decomposition linked to hydrogen recovery from waste activated sludge: role of peracetic acid and free nitrous acid co-pretreatment in a prefermentation-bioelectrolysis cascading system[J]. Water Research, 2020, 176: 115724.
|
[31] |
WU Y X, WANG D B, LIU X R, et al. Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge[J]. Water Research, 2019, 153: 217-228.
|
[32] |
YIN Y N, WANG J L. Optimization of fermentative hydrogen production by Enterococcus faecium INET2 using response surface methodology[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1483-1491.
|
[33] |
ZHANG L G, BAN Q Y, LI J Z, et al. Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater[J]. Chemosphere, 2022, 300: 134503.
|
[34] |
DING J, LIU B F, REN N Q, et al. Hydrogen production from glucose by co-culture of Clostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53[J]. International Journal of Hydrogen Energy, 2009, 34(9): 3647-3652.
|
[35] |
ZHU S G, ZHANG Y, ZHANG Z P, et al. Ascorbic acid-mediated zero-valent iron enhanced hydrogen production potential of bean dregs and corn stover by photo fermentation[J]. Bioresource Technology, 2023, 374: 128761.
|
[36] |
周楠, 荆艳艳, 夏晨曦, 等. 维生素B4对秸秆类生物质光发酵产氢的影响[J]. 热科学与技术, 2021, 20(5): 495-501.
|
[37] |
CAI J J, ZHAO Y X, FAN J B, et al. Photosynthetic bacteria improved hydrogen yield of combined dark- and photo-fermentation[J]. Journal of Biotechnology, 2019, 302: 18-25.
|
[38] |
ZHU S G, YANG X M, ZHANG Z P, et al. Tolerance of photo-fermentative biohydrogen production system amended with biochar and nanoscale zero-valent iron to acidic environment[J]. Bioresource Technology, 2021, 338: 125512.
|
[39] |
YANG J B, JIANG D P, SHUI X N, et al. Effect of 5-HMF and furfural additives on bio-hydrogen production by photo-fermentation from giant reed[J]. Bioresource Technology, 2022, 347: 126743.
|
[40] |
MASIHI F, REZAEITAVABE F, KARIMI-JASHNI A, et al. Optimization and enhancement of biohydrogen production in a single-stage hybrid (dark/photo) fermentation reactor using Fe3O4 and TiO2 nanoparticles[J]. International Journal of Hydrogen Energy, 2024, 52, Part D: 295-305.
|