Citation: | FEI Tingting, DING Xiaoting, QUE Xiang, LIN Jin, LIN Jian, WANG Ziwei, LIU Jinfu. SPATIOTEMPORAL HETEROGENEITY ANALYSIS OF ENERGY CARBON EMISSION EFFICIENCY IN CHINA BASED ON SBM-DEA AND STWR MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 188-200. doi: 10.13205/j.hjgc.202410022 |
[1] |
张剑, 刘景洋, 董莉,等. 中国能源消费CO2排放的影响因素及情景分析[J]. 环境工程技术学报, 2023, 13 (1): 71-78.
|
[2] |
中华人民共和国气候变化第四次国家信息通报[EB/OL]. https://www.gov.cn/lianbo/bumen/202312/P020231230296808058475.pdf.
|
[3] |
张慧敏, 魏强, 佟连军. 吉林省产业发展与能源消费实证研究[J]. 地理学报, 2013, 68 (12): 1678-1688.
|
[4] |
张辽, 黄蕾琼. 中国工业企业绿色技术创新效率的测度及其时空分异特征:基于改进的三阶段SBM-DEA模型分析[J]. 统计与信息论坛, 2020, 35(12): 50-61.
|
[5] |
向书江, 杨春梅, 谢雨琦,等. 近20年重庆市主城区碳排放的时空动态演进及其重心迁移[J]. 环境科学, 2023, 44 (1): 560-571.
|
[6] |
王勇, 赵晗. 中国碳交易市场启动对地区碳排放效率的影响[J]. 中国人口·资源与环境, 2019, 29 (1): 50-58.
|
[7] |
AIGNER D, LOVELL C A K, SCHMIDT P. Formulation and estimation of stochastic frontier production function models[J]. Journal of Econometrics, 1977, 6 (1): 21-37.
|
[8] |
FARRELL M J. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society: Series A (General), 1957, 120 (3): 253-281.
|
[9] |
朱顺应, 廖凌云, 吴景安,等. 城市客运交通工具碳排放效率差异:以襄阳市为例[J]. 交通运输系统工程与信息, 2022, 22 (4): 158-166.
|
[10] |
孙秀梅, 王格, 董会忠,等. 基于DEA与SE-SBM模型的资源型城市碳排放效率及影响因素研究:以全国106个资源型地级市为例[J]. 科技管理研究, 2016, 36 (23): 78-84.
|
[11] |
张少华, 蒋伟杰. 能源效率测度方法:演变、争议与未来[J]. 数量经济技术经济研究, 2016, 33 (7): 3-24.
|
[12] |
CHARNES A, COOPER W W, LEWIN A Y, et al. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2 (6): 429-444.
|
[13] |
COOPER W W, PASTOR J T. Generalized efficiency measures (GEMS) and model relations for use in DEA[C].Georgia Productivity Workshop. 1996, 2.
|
[14] |
TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130 (3): 498-509.
|
[15] |
GUO Y, LIU W, TIAN J P, et al. Eco-efficiency assessment of coal-fired combined heat and power plants in Chinese ecoindustrial parks[J]. Journal of Cleaner Production, 2017, 168: 963-972.
|
[16] |
GUO X F, ZHU Q Y, LV L, et al. Efficiency evaluation of regional energy saving and emission reduction in China: a modified slacks-based measure approach[J]. Journal of Cleaner Production, 2017, 140: 1313-1321.
|
[17] |
SHANG Y, LIU H B, LV Y. Total factor energy efficiency in regions of China: an empirical analysis on SBM-DEA model with undesired generation[J]. Journal of King Saud University-Science, 2020, 32 (3): 1925-1931.
|
[18] |
于向宇, 陈会英, 李跃. 基于合成控制法的碳交易机制对碳绩效的影响[J]. 中国人口·资源与环境, 2021, 31 (4): 51-61.
|
[19] |
李欢, 杨珊, 陈建宏,等. 湖南省能源消费碳排放驱动因素及趋势预测实证分析[J]. 环境工程, 2018, 36 (2): 152-157.
|
[20] |
CHEN X, LIN B. Energy and CO2 emission performance: a regional comparison of China’s non-ferrous metals industry[J]. Journal of Cleaner Production, 2020, 274 (20): 1-15.
|
[21] |
丁绪辉, 张紫璇, 吴凤平. 双控行动下环境规制对区域碳排放绩效的门槛效应研究[J]. 华东经济管理, 2019, 33 (7): 44-51.
|
[22] |
胡剑波, 王楷文. 中国省域碳排放效率时空差异及空间收敛性研究[J]. 管理学刊, 2022, 35 (4): 36-52.
|
[23] |
杜翼, 马静静, 项康利. 基于三阶段DEA模型的福建省能源碳排放效率与影响因素研究[J]. 创新科技, 2019, 19 (10): 8-19.
|
[24] |
杨迪, 杨旭, 吴相利,等. 东北地区能源消费碳排放时空演变特征及其驱动机制[J]. 环境科学学报, 2018, 38 (11): 4554-4565.
|
[25] |
FOTHERINGHAM A S, CRESPO R, YAO J. Exploring, modelling and predicting spatiotemporal variations in house prices[J]. The Annals of Regional Science, 2015, 54: 417-436.
|
[26] |
HU X S, XU H Q. Spatial variability of urban climate in response to quantitative trait of land cover based on GWR model[J]. Environmental monitoring and assessment, 2019, 191: 1-12.
|
[27] |
王旭, 林征, 张志,等. 基于GWR模型的北极滨海平原融冻湖表面温度空间分布模拟[J]. 武汉大学学报(信息科学版), 2016, 41 (7): 918-924.
|
[28] |
BTUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28 (4): 281-298.
|
[29] |
王正, 樊杰. 能源消费碳排放的影响因素特征及研究展望[J]. 地理研究, 2022, 41 (10): 2587-2599.
|
[30] |
QUE X, MA X G, MA C, et al. A spatiotemporal weighted regression model (STWR V1.0) for analyzing local nonstationarity in space and time[J]. Geoscientific Model Development, 2020,13 (12): 6149-6164.
|
[31] |
QUE X, MA C, MA X G, et al. Parallel computing for fast spatiotemporal weighted regression[J]. Computers & Geosciences, 2021, 150: 104723.
|
[32] |
FAN C, QUE X, WANG Z, et al. Land cover impacts on surface temperatures: evaluation and application of a novel spatiotemporal weighted regression approach[J]. ISPRS International Journal of Geo-Information, 2023, 12 (4): 151.
|
[33] |
QUE X, ZHUANG X H, MA X G, et al. Modeling the spatiotemporal heterogeneity and changes of slope stability in rainfall-induced landslide areas[J]. Earth Science Informatics, 2024, 17(1):51-61.
|
[34] |
ZHANG C Q, CHEN P Y. Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries[J]. Energy, 2022, 241: 122917.
|
[35] |
郭炳南, 曹国勇. 中国各省份碳排放效率与减排潜力测度研究:基于 Undesirable-SBM 超效率模型的实证分析[J]. 生态经济, 2017,33(8): 20-24
, 47.
|
[36] |
袁长伟, 乔丹, 杨颖芳,等. 中国省域交通碳排放强度空间分异与聚类分析[J]. 环境工程, 2018, 36 (7): 185-190.
|
[37] |
刘志华, 徐军委, 张彩虹. 科技创新、产业结构升级与碳排放效率:基于省际面板数据的PVAR分析[J]. 自然资源学报, 2022, 37 (2): 508-520.
|
[38] |
马晓君, 陈瑞敏,董碧滢,等. 中国工业碳排放的因素分解与脱钩效应[J]. 中国环境科学, 2019, 39 (8): 3549-3557.
|
[39] |
刘斌, 潘彤. 地方政府创新驱动与中国南北经济差距:基于企业生产率视角的考察[J]. 财经研究, 2022, 48 (2): 18-32.
|
[40] |
季凯文, 罗璐薏, 齐江波. 新基建赋能高新技术产业的异质性影响研究:基于空间面板计量模型的实证检验[J]. 管理评论, 2023, 35 (2): 28-37.
|
[41] |
CHANGE I P O. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan, 2006.
|
[42] |
CHARNES A, COOPER W, LEWIN A Y, et al. Data envelopment analysis theory, methodology and applications[J]. Journal of the Operational Research Society, 1997, 48 (3): 332-333.
|
[43] |
周宁南, 张孝, 刘城山,等. 基于动态时间规整的时序数据相似连接[J]. 计算机学报, 2018, 41(8): 1798-1813.
|
[44] |
PETITJEAN F, KETTERLIN A, GANCARSKI P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44 (3): 678-693.
|
[45] |
LIN X W, MA J J, CHEN H, et al Carbon emissions estimation and spatiotemporal analysis of China at city level based on multi-dimensional data and machine learning[J]. Remote Sensing, 2022, 14 (13): 3014.
|
[46] |
LV Q, LIU H, WANG J, et al. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Science of the Total Environment, 2020, 703: 134394.
|
[47] |
SONG M, WU J, SONG M R, et al. Spatiotemporal regularity and spillover effects of carbon emission intensity in China’s Bohai Economic Rim[J]. Science of the Total Environment, 2020, 740:140184.
|
[48] |
马雄威. 线性回归方程中多重共线性诊断方法及其实证分析[J]. 华中农业大学学报(社会科学版), 2008 (2): 78-81,85.
|
[49] |
杨涛, 谢紫琦, 胡婧妍,等. 基于回归Shapley值分解法的回采工作面瓦斯涌出量影响因素研究[J]. 煤矿安全, 2023, 54 (11): 18-24.
|
[50] |
NAGELKERKE N J D. A note on a general definition of the coefficient of determination[J]. Biometrika, 1991, 78 (3): 691-692.
|
[51] |
DANIEL G. Brooks (1989) akaike information criterion statistics, technometrics[J]. Technometrics, 1989, 31 (2): 270-271.
|
[52] |
MORGAN J A, TATARR J F. Calculation of the residual sum of squares for all possible regressions[J]. Technometrics, 1972, 14 (2): 317-325.
|
[53] |
方创琳, 李广东, 戚伟,等. "胡焕庸线"东西部城乡发展不平衡趋势及沿博台线微突破策略[J]. 地理学报, 2023, 78 (2): 443-455.
|
[54] |
丁金宏, 程晨, 张伟佳,等. 胡焕庸线的学术思想源流与地理分界意义[J]. 地理学报, 2021, 76 (6): 1317-1333.
|
[55] |
冯冬, 李健. 我国三大城市群城镇化水平对碳排放的影响[J]. 长江流域资源与环境, 2018, 27 (10): 2194-2200.
|
[56] |
LIU Z Y, HAN L, LIU M. Spatiotemporal characteristics of carbon emissions in Shaanxi, China, during 2012—2019: a machine learning method with multiple variables[J]. Environmental Science and Pollution Research, 2023, 30 (37): 87535-87548.
|
[57] |
TANG J X, GONG R Z, WANG H L, et al. Scenario analysis of transportation carbon emissions in China based on machine learning and deep neural network models[J]. Environmental Research Letters, 2023, 18 (6): 064018.
|
[58] |
苏少强, 阙翔, 严宣辉,等. 基于STWR模型的森林病虫影响因素研究[J]. 西北农林科技大学学报(自然科学版), 2022, 50 (11): 81-92.
|
[59] |
BOYD G A, MCCLELLAND J D. The impact of environmental constraints on productivity improvement in integrated paper plants[J]. Journal of Environmental Economics and Management, 1999, 38 (2):121-142.
|