Citation: | MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001 |
[1] |
IPCC. Climate Change 2014: Synthesis Report[M]. Cambridge: Cambridge University Press, 2014.
|
[2] |
World Meteorological Organization. WMO Greenhouse Gas Bulletin No.19[R/OL]. https://wmo.int/publication-series/wmo-greenhouse-gas-bulletin-no-19. 2023-11-15.
|
[3] |
《2022年中国城乡建设统计年鉴》编委会.中国城乡建设统计年鉴[M]. 北京:中国统计出版社, 2023:4-5.
|
[4] |
GUISASOLA A, de HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
|
[5] |
FOLEY J, YUAN Z G, LANT P. Dissolved methane in rising main sewer systems: field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science & Technology, 2009, 60(11): 2963-2971.
|
[6] |
SHORT M D, DAIKELER A, PETERS G M, et al. Municipal gravity sewers: an unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014, 468: 211-218.
|
[7] |
CLEMENS J, HAAS B. Nitrous oxide emissions in sewer systems[J]. Acta hydrochimica et hydrobiologica, 1997, 25(2): 96-99.
|
[8] |
FRIES A E, SCHIFMAN L A, SHUSTER W D, et al. Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio[J]. Environmental Pollution, 2018, 236: 247-256.
|
[9] |
WILLIS J. GHG methodologies for sewer CH4, methanol-use CO2, and biogas combustion CH4 and their significance for centralized wastewater treatment[D]. Queensland Australia: The University of Queensland, 2017.
|
[10] |
GUO L, PORRO J, SHARMA K R, et al. Towards a benchmarking tool for minimizing wastewater utility greenhouse gas footprints[J]. Water Science & Technology, 2012, 66(11): 2483-2495.
|
[11] |
郝晓地, 孙群, 李季, 等. 排水管道甲烷产生影响因素及其估算方法[J]. 中国给水排水, 2022, 38(20): 1-7.
|
[12] |
ZHU H J, WANG Q, LIU J, et al. Closing the gap in methane emission from urban wastewater sewer system in China[J]. Journal of Cleaner Production, 2024, 437:140722.
|
[13] |
LIM J S, KIM J, FRIEDMAN J, et al. SewerSnort: a drifting sensor for in situ wastewater collection system gas monitoring[J]. Ad Hoc Networks, 2013, 11(4): 1456-1471.
|
[14] |
LIU Y, NI B J, GANIGUE R, et al. Sulfide and methane production in sewer sediments[J]. Water Research, 2015, 70: 350-359.
|
[15] |
XU J W, HE Q, LI H, et al. Modeling of methane formation in gravity sewer system: the impact of microorganism and hydraulic condition[J]. AMB Express, 2018, 8(34): 1-10.
|
[16] |
LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815.
|
[17] |
JENSEN H, BIGGS C A, KARUNAKARAN E. The importance of sewer biofilms[J]. WIREs Water, 2016, 3(4): 487-494.
|
[18] |
郝晓地, 杨振理, 张益宁, 等. 排水管道中CH4、H2S与N2O的产生机制及其控制策略[J]. 环境工程学报, 2023, 17(1): 1-12.
|
[19] |
熊洁, 左晓俊, 李路程, 等. 城市排水管网中温室气体减排策略研究进展[J]. 中国环境科学, 2023,43(4): 1937-1945.
|
[20] |
ZHOU Z, ZHANG C J, LIU P F, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892): 257-262.
|
[21] |
SUN J, HU S, SHARMA K R, et al. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology, 2014, 80(22): 7042-7052.
|
[22] |
CAO J J, ZHANG L, HONG J Y, et al. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers[J]. Water Research, 2019, 164: 114914.
|
[23] |
LI Y, JIANG J, ZHANG W L, et al. Changes in stoichiometric ratio of carbon and sulfate affect methanogenesis pathways in sulfate-rich sewers[J]. Journal of Cleaner Production, 2023, 426:139112.
|
[24] |
KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17): 4093-4103.
|
[25] |
DUAN H R, YE L, ERLER D, et al. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology: a critical review[J]. Water Research, 2017, 122: 96-113.
|
[26] |
LAW Y, YE L, PAN Y, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1593): 1265-1277.
|
[27] |
CHEN H B, ZENG L, WANG D B, et al. Recent advances in nitrous oxide production and mitigation in wastewater treatment[J]. Water Research, 2020, 184: 116168.
|
[28] |
LEE Y, CHOI H, CHO K, et al. Toxic/hazardous substances and environmental engineering effects of carbon source, C/N ratio, nitrate, temperature, and pH on N2O emission and functional denitrifying genes during heterotrophic denitrification emission and functional denitrifying genes during heterotrophic denitrification[J]. Journal of Environmental Science and Health, Part A, 2019, 54(1): 16-29.
|
[29] |
ZHANG G J, PANG Y, ZHOU Y C, et al. Effect of dissolved oxygen on N2O release in the sewer system during controlling hydrogen sulfide by nitrate dosing[J]. Science of the Total Environment, 2022, 816: 151581.
|
[30] |
SONG C, ZHU J J, WILLIS J L, et al. Methane emissions from municipal wastewater collection and treatment systems[J]. Environmental Science & Technology, 2023, 57(6): 2248-2261.
|
[31] |
BEELEN B, PARKER W. A probabilistic approach to the quantification of methane generation in sewer networks[J]. Journal of Environmental Management, 2022, 320: 115775.
|
[32] |
苑心, 李轩, 胡言午, 等. 隐形的地下碳源:城市排水管道CH4排放[J]. 给水排水, 2022, 58(9): 139-146.
|
[33] |
KYUNG D, KIM D, YI S, et al. Estimation of greenhouse gas emissions from sewer pipeline system[J]. International Journal of Life Cycle Assessment, 2017, 22(12): 1901-1911.
|
[34] |
GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48: 569-578.
|
[35] |
JIANG G, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251.
|
[36] |
SPENCER A U, NOLAND S S, GOTTLIEB L J. Bathtub fire: an extraordinary burn injury[J]. Journal of Burn Care & Research, 2006, 27(1): 97-98.
|
[37] |
JOO J, JEONG S, SHIN J, et al. Missing methane emissions from urban sewer networks[J]. Environmental Pollution, 2024, 342: 123101.
|
[38] |
CHEN H, YE J, ZHOU Y, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: an assessment of the role of dissolved organic matter components and microbiota[J]. Environmental Pollution, 2020, 263: 114489.
|
[39] |
CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health, Part A, 2014, 49(11): 1316-1321.
|
[40] |
LIU Y, SHARMA K R, MURTHY S, et al. On-line monitoring of methane in sewer air[J]. Scientific Reports, 2014, 4(1): 6637.
|
[41] |
TERRYN I C C, COCARCEA A, LAZAR G. Mitigation of hazardous air pollutant emissions: vacuum vs. conventional sewer system [J]. Environmental Engineering and Management Journal, 2017, 16(4): 809-819.
|
[42] |
JIN P K, WANG B, JIAO D, et al. Characterization of microflora and transformation of organic matters in urban sewer system[J]. Water Research, 2015, 84: 112-119.
|
[43] |
赵刚, 蒋明, 韦志成, 等. 不同水质条件下污水管道甲烷排放规律及微生物作用机制[J]. 环境工程, 2024, 42(4): 22-30.
|
[44] |
陈思远, 肖向哲, 滕俊, 等. 剩余污泥厌氧消化过程产甲烷抑制技术研究进展[J]. 环境工程, 2021, 39(6): 137-143.
|
[45] |
WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037.
|
[46] |
GUISASOLA A, SHARMA K R, KELLER J, et al. Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009, 43(11): 2874-2884.
|
[47] |
SHORT M D, DAIKELER A, WALLIS K, et al. Dissolved methane in the influent of three Australian wastewater treatment plants fed by gravity sewers[J]. Science of the Total Environment, 2017, 599: 85-93.
|
[48] |
LIU Y W, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118.
|
[49] |
HE Q, YIN F X, LI H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: a suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018, 25(16): 15743-15753.
|
[50] |
XU J W, LI M Z, HE Q, et al. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer[J]. Environmental Science and Pollution Research, 2017, 24(1): 427-435.
|
[51] |
LIU Y W, NI B J, SHARMA K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524: 40-51.
|
[52] |
SUN J, HU S H, SHARMA K R, et al. Impact of reduced water consumption on sulfide and methane production in rising main sewers[J]. Journal of Environmental Management, 2015, 154: 307-315.
|
[53] |
吴美容, 张瑞, 周俊, 等. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602-1606.
|
[54] |
TAN E, ZOU W B, ZHENG Z Z, et al. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation[J]. Nature. Climate. Change, 2020, 10: 349-355.
|
[55] |
CHUN Y, KIM D, HATTORI S, et al. Temperature control on wastewater and downstream nitrous oxide emissions in an urbanized river system[J]. Water Research, 2020, 187: 116417.
|
[56] |
ZUO Z Q, REN D H, QIAO L K, et al. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers[J]. Water Research, 2021, 203: 117494.
|
[57] |
FRUTOS O D, QUIJANO G, AIZPURU A, et al. A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources[J]. Biotechnology Advances, 2018, 36(4): 1025-1037.
|
[58] |
SUN J, NI B J, SHARMA K R, et al. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J]. Water Research, 2018, 129: 58-65.
|
[59] |
AI T, HE Q, XU J W, et al. A conceptual method to simultaneously inhibit methane and hydrogen sulfide production in sewers: the carbon metabolic pathway and microbial community shift[J]. Journal of Environmental Management, 2019, 246: 119-127.
|
[60] |
PAN Y T, LIU Y W, WANG D B, et al. Modeling effects of H2S on electron competition among nitrogen oxide reduction and N2O accumulation during denitrification[J]. Environmental Science: Water Research & Technology, 2019, 5(3): 533-542.
|
[61] |
PAN Y T, YE L, YUAN Z G. Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Environmental Science & Technology, 2013, 47(15): 8408-8415.
|
[62] |
潘亚男, 王娅静, 曹文超, 等. 土壤pH影响氧化亚氮(N2O)排放的研究进展[J]. 安徽农学通报, 2017, 23(15): 19-24.
|
[63] |
CHEN Y, XING Y X, ZUO Z Q, et al. Enhanced mechanistic insights and performance optimization: controlling methane and sulfide in sewers using nitrate dosing strategies[J]. Science of the Total Environment, 2024, 907: 167580.
|
[64] |
JIANG G M, GUTIERREZ O, SHARMA K R, et al. Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers[J]. Water Research, 2011, 45(18): 6163-6172.
|
[65] |
薛朝霞, 冯骞, 方芳, 等. 城镇污水管道系统甲烷产排特性及发生机制[J]. 环境工程, 2022, 40(6): 123-129.
|
[66] |
SHARMA K R, YUAN Z G, de HAAS D, et al. Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11): 2527-2538.
|
[67] |
GANIGUE R, YUAN Z G. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J]. Journal of Environmental Management, 2014, 144: 279-285.
|
[68] |
GAO R Y, ZHANG Z Q, ZHANG T W, et al. Upstream Natural Pulsed Ventilation: a simple measure to control the sulfide and methane production in gravity sewer[J]. Science of the Total Environment, 2020, 742: 140579.
|
[69] |
MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al. Impact of nitrate addition on biofilm properties and activities in rising main sewers[J]. Water Research, 2009, 43(17): 4225-4237.
|
[70] |
JIANG G M, SHARMA K R, YUAN Z G. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water Research, 2013, 47(5): 1783-1792.
|
[71] |
JIANG G M, GUTIERREZ O, YUAN Z Q. The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms[J]. Water Research, 2011, 45(12): 3735-3743.
|
[72] |
JIANG G M, YUAN Z G. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide[J]. Journal of Hazardous Materials, 2013, 250/251: 91-98.
|
[73] |
ZHANG L S, KELLER J, YUAN Z G. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123-4132.
|
[74] |
PIKAAR I, FLUGEN M, LIN H W, et al. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control[J]. Water Research, 2019, 167: 115032.
|
[75] |
YAN X F, SUN J, KENJIAHAN A, et al. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms[J]. Water Research, 2020, 169: 115208.
|
[76] |
YAN X F, SUN J, WANG Y Z, et al. Low-rate ferrate dosing damages the microbial biofilm structure through humic substances destruction and facilitates the sewer biofilm control[J]. Water Research, 2023, 235: 119834.
|
[77] |
SHARMA K, GANIGUE R, YUAN Z G. pH dynamics in sewers and its modeling[J]. Water Research, 2013, 47: 6086-6096.
|
[78] |
GUTIERREZ O, PARK D, SHARMA K R, et al. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43: 2549-2557.
|
[79] |
CEN X T, DUAN H R, HU Z T, et al. Multifaceted benefits of magnesium hydroxide dosing in sewer systems: impacts on downstream wastewater treatment processes[J]. Water Research, 2023, 247: 120778.
|
[80] |
ZHAO Z L, YANG J, ZHANG Z G, et al. New method for efficient control of hydrogen sulfide and methane in gravity sewers: combination of NaOH and Nitrite[J]. Frontiers of Environmental Science & Engineering, 2022, 16(6): 75.
|
[81] |
BLACK G, JONES M, VALE P, et al. Biofilm responses to toxic shocks in closed pipes: using nitrous oxide emissions as an early warning of toxicity ahead of a wastewater treatment works[J]. Water Air and Soil Pollution, 2014, 225(2): 1837.
|