Citation: | LOU Mingyue, LIU Guangbing, LIU Weijing, MENG Xi, SHI Mengqi, GUO Mingchen. RESEARCH ON CARBON EMISSION ACCOUNTING METHOD FOR TYPICAL WASTEWATER COLLECTION UNITS BASED ON ANAEROBIC CARBON CYCLE THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007 |
[1] |
郝晓地, 张益宁, 李季, 等. 下水道甲烷释放模型评价与内在控制分析[J]. 中国给水排水, 2023, 39(17): 1-9.
|
[2] |
KYUNG D, KIM D, YI S, et al. Estimation of greenhouse gas emissions from sewer pipeline system[J]. International Journal of Life Cycle Assessment, 2017, 22: 1901-1911.
|
[3] |
王钊越, 赵夏滢, 唐琳慧, 等. 城市污水收集与处理系统碳排放监测评估技术研究进展[J].环境工程, 2022, 40(6): 77-82
, 161.
|
[4] |
CHEN H, YE J F, ZHOU Y F, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: an assessment of the role of dissolved organic matter components and microbiota[J]. Environmental Pollution, 2020, 263: 114489.
|
[5] |
JIN P K, GU Y G, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for biofuels, 2019, 12: 1-11.
|
[6] |
GUISASOLA A, SHARMA K R, KELLER J, et al. Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009, 43(11): 2874-2884.
|
[7] |
JIANG G M, SHARMA K R, YUAN Z G. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water research, 2013, 47(5): 1783-1792.
|
[8] |
郝晓地, 杨文宇, 林甲. 不可小觑的化粪池甲烷碳排量[J]. 中国给水排水, 2017, 33(10): 28-33.
|
[9] |
张远, 吕淑然, 杨凯, 等. 城市污水管道甲烷爆炸防控对策研究现状及展望[J]. 安全与环境工程, 2015, 22(5): 134-138.
|
[10] |
胡修稳. 重庆主城区污水管道气体安全风险评估模型研究[D]. 重庆:重庆大学, 2012.
|
[11] |
Intergovernmental Panel on Climate Change(IPCC). 2006 IPCC National Greenhouse Gas Inventory Guidelines[S]. 2006.
|
[12] |
Intergovernmental Panel on Climate Change(IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[S]. 2019.
|
[13] |
YONO B, SYAICHURROZI I, SUMARDIONO S. Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7: 2798-2805.
|
[14] |
WILLIS J, BROWER B, GRAF W, et al. Manuscript:new GHG methodology to quantify sewer methane[C]//Water Environment Federation 91st Annual Water Environment Federation Technical Exhibition and Conference, Alexandria: Water Environment Federation, 2018: 4745-4752.
|
[15] |
LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815.
|
[16] |
孙征. 重力流污水管网硫化物产生特征及沉积相中微生物分析[D]. 西安:长安大学, 2019.
|
[17] |
张程. 污水处理系统碳排放规律研究与量化评价[D]. 西安:西安理工大学, 2017.
|
[18] |
杨世琪. 城镇污水处理系统碳核算方法与模型研究[D]. 重庆:重庆大学, 2013.
|
[19] |
GOSSET-ERARD C, AUBRIET F, LEIZE-WAGNER E, et al. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: the art of compromises and the possible-A review[J]. Talanta, 2023, 257: 124324.
|
[20] |
LV L L, HUANG H L, LV J T, et al. Unique dissolved organic matter molecules and microbial communities in rhizosphere of three typical crop soils and their significant associations based on FT-ICR-MS and high-throughput sequencing analysis[J]. Science of The Total Environment, 2024, 919: 170904.
|
[21] |
马超, 吴建勋, 倪洪星, 等. 基于FT-ICR MS表征煤焦化废水处理过程有机物分子组成变化[J]. 质谱学报, 2023, 44(3): 387-396.
|
[22] |
国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
|
[23] |
刘伟, 石烜, 徐栋伟, 等. 流速对污水管道中甲烷与硫化物生成的影响[J]. 中国环境科学, 2023, 43(6): 2938-2947.
|
[24] |
GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water research, 2014, 48: 569-578.
|
[25] |
XU J W, HE Q, LI H, et al. Modeling of methane formation in gravity sewer system: the impact of microorganism and hydraulic condition[J]. AMB Express, 2018, 8: 1-10.
|
[26] |
GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
|
[27] |
王洵, 廖琴, 王沛芳, 等. 水库水深变化对不同浮游微生物群落及网络互作关键种的影响[J]. 环境科学, 2023, 44(7): 3881-3891.
|
[28] |
NI B J, YUAN Z G. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87: 336-346.
|
[29] |
石烜. 城市污水管网污染物转化与生物代谢机制研究[D]. 西安:西安建筑科技大学, 2018.
|
[30] |
侯宇轩. 污水管网中真菌的繁衍特性及水力影响机制研究[D]. 西安:西安建筑科技大学, 2022.
|
[31] |
BOSE R S, ZAKARIA B S, DHAR B R, et al. Effect of salinity and surfactant on volatile fatty acids production from kitchen wastewater fermentation[J]. Bioresource Technology Reports, 2022, 18: 101017.
|
[32] |
SINGH R, PALAR S, KOWALCZEWSKI A, et al. Adsorptive recovery of volatile fatty acids from wastewater fermentation broth[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110507.
|
[33] |
ROCHA D H D, SAKAMOTO I K, VARESCHE M B A. Evaluation of significant factors in hydrogen production and volatile fatty acids in co-fermentation of citrus peel waste and processing wastewater[J]. Fuel, 2023, 354: 129306.
|
[34] |
RUB H A, DEGHLES A, HAMED O, et al. Cellulose based polyurethane with amino acid functionality: design, synthesis, computational study and application in wastewater purification[J]. International Journal of Biological Macromolecules, 2023, 239: 124328.
|
[35] |
TANG J L, PU Y H, ZENG T, et al. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: performance and membrane filtration properties[J]. Bioresource Technology, 2022, 345: 126470.
|
[36] |
ARIAS O, LIGERO P, SOTO M. Methane production potential and anaerobic treatability of wastewater and sludge from medium density fibreboard manufacturing[J]. Journal of Cleaner Production, 2020, 277: 123283.
|
[37] |
MORAIS N W S, COELHO M M H, E SILVA A S, et al. Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture[J]. Environmental Pollution, 2021, 280: 116876.
|
[38] |
LOI T H, HIDENORI H, SHIGEO F, et al. Greenhouse gas emissions from blackwater septic systems[J]. Environmental Science & Technology, 2021, 55: 1209-1217.
|
[39] |
陈少林, 王恺, 刘赫南, 等. 深圳地区化粪池设计重难点分析及研究—暨智慧监测系统在排水系统中的运用[J]. 给水排水, 2023, 59(增刊1): 5-8.
|
[40] |
任俊豪, 殷伟民, 贺酰淑, 等. 水力条件对污水管网沉积层中SRB与MA的影响[J]. 中国给水排水, 2022, 38(23): 17-22.
|
[41] |
唐柏杨, 宣干, 杨诗瑶, 等. 重新审视化粪池的温室效应:回顾与展望[J]. 环境工程, 2023, 41(7): 14-21.
|
[42] |
MICHAEL D. S, ALEXANDER D, KIRSTEN W, et al. Dissolved methane in the influent of three Australian wastewater treatment plants fed by gravity sewers[J]. Science of the Total Environment, 2017, 599: 85-93.
|
[43] |
LIU Y W, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118.
|
[44] |
中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M]. 北京:中国建筑工业出版社, 2022.
|