Citation: | LI Si, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. CARBON NEUTRAL POTENTIAL OF WHOLE PROCESS OF CO-DIGESTION OF FOOD WASTE AND SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 90-98. doi: 10.13205/j.hjgc.202411010 |
[1] |
ZAHNG H, LIU G, XUE L, et al. Anaerobic digestion-based waste-to-energy technologies can halve the climate impact of China’s fast-growing food waste by 2040[J]. Journal of Cleaner Production, 2020, 277: 123490.
|
[2] |
Food and Agriculture Organization of the United Nations. Food Wastage Footprint—Impacts on Natural Resources—Summary[R]. Italy, 2023.
|
[3] |
ZAN F X, IQBAL A, GUO G, et al. Integrated food waste management with wastewater treatment in Hong Kong: transformation, energy balance and economic analysis[J]. Water Research, 2020, 184: 116155.
|
[4] |
LIU X M, HUANG H, IQBAL A, et al. Sustainability analysis of implementing sludge reduction in overall sludge management process: where do we stand?[J]. Waste Management, 2022, 152: 80-93.
|
[5] |
IQBAL A, EKAMA G.A, Potential for co-disposal and treatment of food waste with sewage: a plant-wide steady-state model evaluation[J]. Water Research, 2020, 184: 116175.
|
[6] |
宋新新, 刘杰, 林甲, 等.碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J].环境科学学报,2022, 42(4): 53-63.
|
[7] |
IACOVIDOU E, VOULVOULIS N. A multi-criteria sustainability assessment framework: development and application in comparing two food waste management options using a UK region as a case study[J]. Environ Sci Pollut Res, 2018, 25(36): 35821-35834.
|
[8] |
IQBAL A, ZAN F X, LIU X M, et al. Net zero greenhouse emissions and energy recovery from food waste: manifestation from modelling a city-wide food waste management plan[J]. Water Research, 2023, 244: 120481.
|
[9] |
ZAN F, DAI J, HONG Y, et al. The characteristics of household food waste in Hong Kong and their implications for sewage quality and energy recovery[J]. Waste Management, 2018, 74: 63-73.
|
[10] |
CAO Y, van LOOSDRECHT M C, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Appl Microbiol Biotechnol, 2017, 101(4): 1365-1383.
|
[11] |
LU D, IQBAL A, ZAN F X, et al. Integrated life cycle assessment with data envelopment analysis for enhancing medical waste management during a public health crisis[J]. Journal of Cleaner Production, 2023, 426:139074.
|
[12] |
LIU X M, DAI J, NG T L, et al. Evaluation of potential environmental benefits from seawater toilet flushing[J]. Water Research, 2019, 162:505-515.
|
[13] |
IPCC. Climate Change 2021: The Physical Science Basis[R/OL]. https://www.ipcc.ch/report/ar6/wg1/.
|
[14] |
IPCC. 2019 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
|
[15] |
深圳市统计局. 深圳市第七次全国人口普查公报[EB/OL]. http://www.sz.gov.cn/zfgb/2021/gb1199/content/post_8806392.html.
|
[16] |
MELCER H, DOLD P L, JONES R M. Methods for wastewater characterization in activated sludge modelling[M].Water Environment Research Foundation, 2003.
|
[17] |
YOSHIDA H, CHRISTENSEN T H, GUILDAL T, et al. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant[J]. Chemosphere, 2015, 138: 874-882.
|
[18] |
HAO X, CHEN Q, van LOOSDRECHT M C M, et al. Sustainable disposal of excess sludge: incineration without anaerobic digestion[J]. Water Research, 2020, 170: 115298.
|
[19] |
生态环境部. 城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)[EB/OL]. https://www.mee.gov.cn/gkml/hbb/bgg/201003/t20100310_186655.htm.
|
[20] |
梁华杰, 王杰, 孟建国, 等.浅析污泥低温干化设备生产运行表现:以某市经济开发区污水处理厂为例[J]. 智能城市, 2019, 5(15): 131-132.
|
[21] |
国家发改委. 陆上交通运输企业温室气体排放核算方法与报告指南(试行)[EB/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201511/t20151111_963496.html.
|
[22] |
YANG N, ZHANG H, CHEN M, et al. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery[J]. Waste Management, 2012, 32(12): 2552-2560.
|
[23] |
IQBAL A, ZAN F, LIU X, et al. Integrated municipal solid waste management scheme of Hong Kong: a comprehensive analysis in terms of global warming potential and energy use[J]. Journal of Cleaner Production, 2019, 225: 1079-1088.
|
[24] |
广东省生态环境厅. 广东省市县(区)温室气体清单编制指南(试行)[EB/OL]. http://gdee.gd.gov.cn/shbtwj/content/post_3019513.html.
|
[25] |
郝晓地, 王向阳, 曹达啟, 等.污水有机物中化石碳排放CO2辨析[J]. 中国给水排水, 2018, 34(2): 13-17.
|
[26] |
生态环境部. 2019年度减排项目中国区域电网基准线排放因子[EB/OL]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.
shtml.
|
[27] |
FAHIMI A, FEDERICI S, DEPERO L E, et al. Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint[J]. Journal of Cleaner Production, 2021, 289:125762.
|
[28] |
郝晓地, 于晶伦, 刘然彬, 等.剩余污泥焚烧灰分磷回收及其技术进展[J].环境科学学报, 2020, 40 (4): 1149-1159.
|
[29] |
陈舜, 逯非, 王效科.中国氮磷钾肥制造温室气体排放系数的估算[J].生态学报,2015, 35(19): 6371-6383.
|
[30] |
BUBALO A, VOUK D, STIRMER N, et al. Use of sewage sludge ash in the production of innovative bricks: an example of a circular economy[J]. Sustainability, 2021, 13(16):1-18.
|
[31] |
深圳市生态环境局. 2021年度深圳市生态环境状况公报[EB/OL]. http://meeb.sz.gov.cn/xxgk/tjsj/ndhjzkgb/content/post_9843705.html.
|
[32] |
刘荣杰, 邓舟, 梁卫坤, 等. 深圳市政污水厂对家庭厨余垃圾粉碎直排的耐受分析[J]. 环境卫生工程, 2018, 26(4): 43-47.
|
[33] |
YOSHIDA H, MONSTER J, SCHEUTZ C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant[J]. Water Research, 2014, 61: 108-118.
|
[34] |
EVANGELISTI S, LETTIERI P, BORELLO D, et al. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study[J]. Waste Management, 2014, 34(1): 226-237.
|
[35] |
WANG Z Y, MIN Z, DUAN H R, et al. A 20-year journey of partial nitritation and anammox (PN/A): from sidestream toward mainstream[J]. Environmental Science & Technology, 2022, 56(12): 7522-7531.
|
[36] |
LIU X M, IQBAL A, HUANG H, et al. Life cycle assessment of deploying sludge minimization with (sulfidogenic-)oxic-settling-anaerobic configurations in sewage-sludge management systems[J]. Bioresource Technology, 2021, 335: 125266.
|
[37] |
GUVEN H, ERSAHIN M E, DERELI R K, et al. Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste[J]. Energy, 2019, 172: 1027-1036.
|
[38] |
CELEBI E B, AKSOY A, SANIN F. Maximizing the energy potential of urban sludge treatment: an experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion[J]. Energy, 2021, 221, 119876.
|
[39] |
次瀚林, 王先恺, 董滨.不同污泥干化焚烧技术路线全链条碳足迹分析[J]. 净水技术, 2021, 40(6): 77-82
, 99.
|