Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
WAN Jiguo, XU Li, WANG Yu. Effect of Ca/P ratio on catalytic oxidation of dichloromethane over Ru/hydroxyapatite catalysts[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 175-184. doi: 10.13205/j.hjgc.202501019
Citation: WAN Jiguo, XU Li, WANG Yu. Effect of Ca/P ratio on catalytic oxidation of dichloromethane over Ru/hydroxyapatite catalysts[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 175-184. doi: 10.13205/j.hjgc.202501019

Effect of Ca/P ratio on catalytic oxidation of dichloromethane over Ru/hydroxyapatite catalysts

doi: 10.13205/j.hjgc.202501019
  • Received Date: 2023-10-09
  • Accepted Date: 2024-03-27
  • Rev Recd Date: 2024-01-02
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • Catalytic oxidation is the most effective way to treat CVOCs. At present, the core difficulties in making efficient CVOCs catalysts are achieving high activity, resistance to chlorine poisoning and resistance to high temperature sintering. In this experiment, a series of hydroxyapatite (HAP(X), X refers to the Ca/P molar ratio) with different Ca/P molar ratios were prepared by liquid phase deposition method, and then ruthenium (Ru) was loaded on the surface of HAP(X) by urea homogeneous deposition precipitation method to prepare the Ru/HAP(X) catalyst. As shown by the results of XRD, FT-IR, SEM, TEM, H2-TPR, NH3-TPD, etc., Ru nanoparticles were highly dispersed on the surface of HAP, and Ru/HAP(1.67) exhibited the best low-temperature reducibility, as well as the richest medium and strong acid sites. The catalytic oxidation activity, selectivity, and stability of Ru/HAP(X) for dichloromethane (DCM) were investigated by taking DCM as typical chlorine-containing VOCs. The investigation result indicated that Ru/HAP(1.67) had the best catalytic oxidation performance and good stability for DCM. The Ca/P molar ratio had a significant effect on the distribution of by-products in the DCM reaction. Monochloromethane, an incomplete decomposition product, was detected in Ru/HAP (1.50) because of its strong acidity. With the increase in Ca/P molar ratio, trichloromethane and tetrachloromethane were the main by-products of Ru/HAP(1.60) and Ru/HAP(1.67). The research results provide references for industrial application of CVOCs catalytic oxidation and high value-added utilization of phosphorus resources.
  • loading
  • [1]
    席劲瑛,武俊良,胡洪营,等. 工业VOCs排放源废气排放特征调查与分析[J]. 中国环境科学, 2010, 30(11): 1558-1562.

    XI J Y, WU J L, HU H Y, et al. Investigation and analysis of exhaust gas emission characteristics of industrial VOCs emission sources[J]. China Environmental Science, 2010, 30(11): 1558-1562.
    [2]
    陈立,刘霄龙,施文博,等. 氯代挥发性有机物CVOCs催化氧化的研究进展[J]. 环境工程, 2017, 35(10): 114-119.

    CHEN L, LIU X L, SHI W B, et al. Research progress in catalytic oxidation of chlorinated volatile organic compounds (CVOCs)[J]. Environmental Engineering, 2017, 35(10): 114-119.
    [3]
    汤奔,苏惠旋. 化工类废气挥发性有机VOC的危害及催化氧化技术研究进展[J]. 广东化工, 2023, 50(9): 150-153.

    TANG B, SU H X. Research progress on the hazards of volatile organic VOCs in chemical waste gas and catalytic oxidation technology[J]. Guangdong Chemical Industry, 2023, 50(9): 150-153.
    [4]
    魏潇,黄胜,吴幼青,等. VOCs末端治理技术的研究现状[J]. 环境工程, 2023, 41(增刊1): 338-344. WEI X, HUANG S, WU Y Q, et al. Research status of VOCs end treatment technology[J]. Environmental Engineering, 2023

    , 41(S1): 338-344.
    [5]
    张景才. 耐高温负载型贵金属催化燃烧及甲烷干重整催化剂研究[D]. 济南:山东大学, 2017. ZHANG J C. Research on high temperature supported catalysts for catalytic combustion of precious metals and dry reforming of methane[D]. Jinan: Shandong University, 2017.
    [6]
    MA M J, ZHANG Y, JI Y J, et al. Diluted silicon promoting Pd/Pt catalysts for oxygen reduction reaction with strong anti-poisoning effect[J]. Applied Catalysis B: Environmental, 2022, 315.
    [7]
    唐文清,冯泳兰,李小明. 掺硅碳羟基磷灰石的制备及其对Pb2+的吸附性能[J]. 中国环境科学, 2013, 33(6): 1017-1024.

    TANG W Q, FENG Y L, LI X M. Preparation of silica-doped hydroxyapatite and its adsorption properties for Pb2+[J]. China Environmental Science, 2013, 33(6): 1017-1024.
    [8]
    马利国,孙艳荣,李东来,等. 羟基磷灰石载体的结构和作用及在催化剂制备中的应用[J]. 硅酸盐学报, 2019, 47(12): 1808-1817.

    MA L G, SUN Y R, LI D L, et al. Structure and function of hydroxyapatite support and its application in catalyst preparation[J]. Journal of the Chinese Ceramics, 2019, 47(12): 1808-1817.
    [9]
    SHUAI C J, YANG W J, FENG P, et al. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity[J]. Bioactive Materials, 2021, 6(2): 490-502.
    [10]
    李梦雨,汤建伟,刘咏,等. 醋酸酸解磷尾矿制备醋酸钙镁融雪剂工艺研究[J]. 无机盐工业, 2024, 56(1): 73-80.

    LI M Y, TANG J W, LIU Y, et al. Study on preparation of calcium and magnesium acetate snowmelt from tailings of phosphorous solution[J]. Inorganic Chemicals Industry, 2024, 56(1): 73-80.
    [11]
    刘羽,钟康年,胡文云. 钙磷比对溶—凝法合成羟基磷灰石特征的影响[J]. 化学工业与工程技术, 1997(1): 20-22,56.

    LIU Y, ZHONG K N, HU W Y. Effect of the ratio of calcium and phosphorus on the characteristics of hydroxyapatite synthesized by solution-coagulation method[J]. Chemical Industry and Engineering Technology, 1997(1): 20-22,56.
    [12]
    WANG J D,LIU J K, LU Y, et al. Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials[J]. Materials Research Bulletin, 2014, 55.
    [13]
    TRUNG B C, TU L N Q, THANH L D, et al. Combined adsorption and catalytic oxidation for low-temperature toluene removal using nano-sized noble metal supported on ceria-granular carbon[J]. Journal of Environmental Chemical Engineering, 2020, 8(2).
    [14]
    YANG P, YANG S S, SHI Z N, et al. Deep oxidation of chlorinated VOCs over CeO2 based transition metal mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2015, 162.
    [15]
    戴晓霞. 铈基催化剂催化净化氯苯的反应机制及性能优化研究[D]. 杭州:浙江大学, 2020. DAI X X. Reaction mechanism and optimization of the ceria-based catalysts in the catalytic destruction of chlorobenzene[D]. Hangzhou:Zhejiang University,2020.
    [16]
    XIAO M L, YANG X Q, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8).
    [17]
    SHEN K, GAO B, XIA H Q, et al. Oxy-anionic doping: a new strategy for improving selectivity of Ru/CeO2 with synergetic versatility and thermal stability for catalytic oxidation of chlorinated volatile organic compounds[J]. Environmental Science & Technology, 2022.
    [18]
    WANG Y, YANG D, LI S, et al. Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination[J]. Microporous and Mesoporous Materials, 2018, 258.
    [19]
    施文博. 钌基催化剂催化氧化VOCs的研究进展[J]. 化工技术与开发, 2016, 45(8): 36-38.

    SHI W B.Research Progress of Catalytic Oxidation of VOCs with Ru-based Catalyst[J]. Technology & Development of Chemical Industry,2016,45(8):36-38.
    [20]
    孙海杰,刘欣改,陈志浩,等. 羟基磷灰石负载Ru催化氨硼烷产氢性能研究[J]. 江西师范大学学报(自然科学版), 2020, 44(4): 424-428. SUN H J,LIU X G,CHEN Z H,et al. The Performance of Ru/HAP Catalysts for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane[J]. Journal of Jiangxi Normal University( Natural Science), 2020, 44(4): 424-428.
    [21]
    BROWN P W, CONSTANTZ B. Hydroxyapatite and Related Materials[M]. Boca Raton: CRC Press.
    [22]
    SALMA K, BERZINA-C L, BORODAJENKO N. Calcium phosphate bioceramics prepared from wet chemically precipitated powders[J]. Processing and Application of Ceramics, 2010, 4(1): 45-51.
    [23]
    MATSUURA Y, ONDA A, YANAGISAWA K. Selective conversion of lactic acid into acrylic acid over hydroxyapatite catalysts[J]. Catalysis Communications, 2014, 48.
    [24]
    LIN G B, LIN W W, WU J H, et al. Oxidation of 5-methoxymethylfurfural to 2, 5-furandicarboxylic acid over Ru/hydroxyapatite catalyst in water[J]. Chemical Engineering Science, 2022, 249.
    [25]
    GUO X Y, LIU B, GAO X H, et al. Improved olefin selectivity during CO hydrogenation on hydrophilic Fe/HAP catalysts[J]. Catalysis Today, 2023, 410.
    [26]
    WANG Y, WANG P, LU X F, et al. Construction of mesoporous Ru@ZSM-5 catalyst for dichloromethane degradation: synergy between acidic sites and redox centres[J]. Fuel, 2023, 346.
    [27]
    WANG Y, DU C, LIU Z, et al. Highly active and durable chlorobenzene oxidation catalyst via porous atomic layer coating of Ru on Pt/Al2O3[J]. Applied Catalysis B: Environmental, 2023, 330.
    [28]
    ZHANG Y P, LI G B, WU P, et al. Enhancement of PdV/TiO2 catalyst for low temperature DCM catalytic removal and chlorine poisoning resistance by oxygen vacancy construction[J]. Chemical Engineering Science, 2022, 264: 118126.
    [29]
    SILVESTER L, LAMONIER J F, VANNIER R N, et al. Structural, textural and acid-base properties of carbonate-containing hydroxyapatites[J]. Journal of Materials Chemistry A, 2014, 2(29).
    [30]
    DAI Q G, SHEN K, DENG W, et al. HCl-tolerant HxPO4/RuOx-CeO2 catalysts for extremely efficient catalytic elimination of chlorinated VOCs[J]. Environmental Science & Technology, 2021, 55(6).
    [31]
    WANG Y, CHEN Y, ZHANG L, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308.
    [32]
    DAI Q G, BAI S, WANG X, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study[J]. Applied Catalysis B: Environmental, 2013, 129: 580-588.
    [33]
    TESCHNER D, FARRA R, YAO L, et al. An integrated approach to Deacon chemistry on RuO2-based catalysts[J]. J Catal, 2012, 285(1): 273-284.
    [34]
    LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal, 2021, 404: 126534.
    [35]
    SU J, YAO W Y, LIU Y, et al. The impact of CrOx loading on reaction behaviors of dichloromethane (DCM) catalytic combustion over Cr-O/HZSM-5 catalysts[J]. Applied Surface Science, 2017, 396.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return