Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
QIANG Chunmei, NI Xinxin, WU Jichun, XU Fen, LIU Yuanyuan. Screening method and engineering application of combined remediation technology for petrochemical aggregation sites based on AHP-TOPSIS[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 211-222. doi: 10.13205/j.hjgc.202501023
Citation: QIANG Chunmei, NI Xinxin, WU Jichun, XU Fen, LIU Yuanyuan. Screening method and engineering application of combined remediation technology for petrochemical aggregation sites based on AHP-TOPSIS[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 211-222. doi: 10.13205/j.hjgc.202501023

Screening method and engineering application of combined remediation technology for petrochemical aggregation sites based on AHP-TOPSIS

doi: 10.13205/j.hjgc.202501023
  • Received Date: 2024-07-30
  • Accepted Date: 2024-11-08
  • Rev Recd Date: 2024-09-24
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • The scientific selection of appropriate combined remediation technologies represents a significant challenge in the environmental governance of petrochemical agglomerations. This study proposed a comprehensive screening system for combined remediation technologies specifically designed for petrochemical agglomerations. This screening methodology system encompassed several critical components aiming at enhancing remediation outcomes. Firstly, the system included the development of a comprehensive remediation database tailored for petrochemical contamination sites. This database served as a centralized repository of relevant information, facilitating data analysis and informed decision-making. Secondly, the establishment of a screening indicator system was vital. This system was designed to evaluate the efficacy of various remediation technologies based on key performance metrics. In addition to these components, a weighting calculation method for the screening indicators was formulated. This method allowed for the prioritization of indicators, ensuring that the most impactful factors were duly considered during the selection process. Furthermore, the Technique for Order of Preference by Similarity to an Ideal Solution (TOPSIS) was employed. This quantitative method effectively ranked and selected alternative combined remediation technologies. Based on this framework, a remediation technology screening assistance system was developed, and successfully implemented at a contaminated petrochemical site in Nanjing, Jiangsu Province in China. The results indicated that the optimal combination of remediation technologies included natural attenuation, pump and treat-injection cyclic, and in-situ chemical oxidation. Notably, this combination demonstrated a high degree of consistency with the actual application of the site, confirming the efficacy of the proposed screening methodology in practical applications. In conclusion, these findings not only offer a solid methodological foundation for addressing the specific challenges associated with selecting combined remediation technologies for petrochemical-contaminated sites, but also provide practical guidance for real projects.
  • loading
  • [1]
    任黎明, 秦冰, 桑军强, 等. 石化污染场地地下水修复治理挑战与对策[J]. 石油炼制与化工, 2021, 52(4): 119-126.

    REN L M, QIN B, SANG J Q, et al. Challenges and countermeasures of groundwater remediation and treatment in petrochemical contaminated sites[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 119-126.
    [2]
    郑倩. 中国石油化工行业现状分析及发展建议[J]. 当代石油石化, 2023, 31(7): 19-22.

    ZHENG Q. Analysis and suggestions of China’s petrochemical industry[J]. Petroleum & Petrochemical Today, 2023, 31(7): 19-22.
    [3]
    FRANCA T, DANIEL M L, GIOVANNI P, et al. Geospatial pattern of topsoil pollution and multi-endpoint toxicity in the petrochemical area of Augusta-Priolo (eastern Sicily, Italy)[J]. Chemosphere, 2023, 333: 138802.
    [4]
    WANG B, XIE H L, REN H Y, et al. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields[J]. Journal of Cleaner Production, 2019, 233: 13-22.
    [5]
    MA W M, HU J, LI J, et al. Distribution, sources, and health risk assessment of VOCs/SVOCs in soils obtained from petrochemical-contaminated sites in Guangzhou, a subtropical coastal megacity in southern China[J]. Journal of Cleaner Production, 2023, 426: 139198.
    [6]
    SCOW K M, HICKS K A. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater[J]. Current Opinion in Biotechnology, 2005, 16(3): 246-253.
    [7]
    YANG Z H, FRANCIS V, DONG C D, et al. Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: batch and column studies[J]. Process Safety and Environmental Protection, 2020, 138: 18-26.
    [8]
    HERRERO J, PUIGSERVER D, NIJENHUIS I, et al. Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents[J]. Science of the Total Environment, 2019, 648: 819-829.
    [9]
    张坤, 张杰西, 王钪, 等. 热脱附技术在修复石油烃污染土壤中的应用研究[J]. 环境污染与防治, 2022, 44(3): 297-301.

    ZHANG K, ZHANG J X, WANG K, et al. Application research of thermal desorption technology in petroleum hydrocarbon-contaminated soil remediation[J]. Environmental Pollution & Control, 2022, 44(3): 297-301.
    [10]
    YAO M, BAI J, CHANG Y H, et al. Effects of air flowrate distribution and benzene removal in heterogeneous porous media during air sparging remediation[J]. Journal of Hazardous Materials, 2020, 398: 122866.
    [11]
    GUO Z L, BRUSSEAU M L, FOGG G E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume[J]. Journal of Hazardous Materials, 2019, 365: 796-803.
    [12]
    丁浩然, 王镝翔, 陈成, 等. 典型焦化污染场地多技术联用治理工程应用案例分析[J]. 环境工程技术学报, 2023, 13(5): 1732-1739.

    DING H R, WANG D X, CHEN C, et al. Analysis of application cases of multi-technology combined treatment for typical coking contaminated site[J]. Journal of Environmental Engineering Technology, 2023, 13(5): 1732-1739.
    [13]
    翟美静, 叶雅丽. 化工污染场地土壤污染特征及修复方案分析[J]. 化工管理, 2021, 32: 48-49. ZHAI M J, YE Y L. Analysis of soil pollution characteristics and remediation schemes in chemical contaminated sites[J]. Chemical Engineering Management, 2021

    , 32: 48-49.
    [14]
    吕宏虹, 袁珊珊, 沈伯雄, 等. 组合修复技术在多环芳烃污染地块修复中的应用研究[J]. 环境科学与管理, 2021, 46(6): 108-111.

    LV H H, YUAN S S, SHEN B X, et al. Application of technology combination in restoring PAHs contaminated site[J]. Environmental Science and Management, 2021, 46(6): 108-111.
    [15]
    LAURIN L. Overview of LCA-history, concept, and methodology[J]. Encyclopedia of Sustainable Technologies, 2017, 217-222.
    [16]
    罗云. 基于Topsis的污染场地土壤修复技术筛选方法及应用研究[D]. 上海: 上海师范大学, 2013. LUO Y. Research on Screening Method and Application of Soil Remediation Technology in Contaminated Sites Based on Topsis[D]. Shanghai: Shanghai Normal University, 2013.
    [17]
    ROCCHI L, PAOLOTTI L, ROSATI A, et al. Assessing the sustainability of different poultry production systems: a multicriteria approach[J]. Journal of Cleaner Production, 2019, 211: 103-114.
    [18]
    COSTA A S, GOVINDAN K, FIGUEIRA J R. Supplier classification in emerging economies using the ELECTRE TRI-nC method: a case study considering sustainability aspects[J]. Journal of Cleaner Production, 2018, 201, 925-947.
    [19]
    CINELLI M, GONZALEZ M A, FORD R, et al. Supporting contaminated sites management with Multiple Criteria Decision Analysis: demonstration of a regulation-consistent approach[J]. Journal of Cleaner Production, 2021, 316(20): 128347.
    [20]
    杜新月, 张晓然, 张玉玲, 等. 地下水污染修复技术评价方法研究进展[J]. 科技导报, 2023, 41(11): 26-40.

    DU X Y, ZHANG X R, ZHANG Y L, et al. Research progress in evaluation methods of groundwater remediation technologies[J]. Science & Technology Review, 2023, 41(11): 26-40.
    [21]
    LI X, LI J, SUI H, et al. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant[J]. Journal of Hazardous Materials, 2018, 353: 300-311.
    [22]
    王顺扬. 基于多目标决策方法改进LCA的污染场地修复技术比选研究[D]. 太原: 山西大学, 2021. WANG S Y. Research on the Comparison and Selection of Contaminated Site Remediation Technology Based on the Multi-Objective Decision-Making Method to Improve LCA[D]. Taiyuan: Shanxi University, 2021.
    [23]
    廉新颖, 杨昱, 席北斗, 等. 地下水污染修复技术验证评价方法研究[J]. 环境科学研究, 2018, 31(10): 1743-1750.

    LIAN X Y, YANG Y, XI B D, et al. Developing a verification method for groundwater contamination remediation technologies[J]. Research of Environmental Sciences, 2018, 31(10): 1743-1750.
    [24]
    PIRES A, CHANG N B, MARTINHO G. An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setubal Peninsula[J]. Portugal. Resources, Conservation & Recycling, 2011, 56: 7-21.
    [25]
    张倩, 蒋栋, 谷庆宝, 等. 基于AHP和TOPSIS的污染场地修复技术筛选方法研究[J]. 土壤学报, 2012, 49(6): 1088-1094.

    ZHANG Q, JIANG D, GU Q B, et al. Selection of remediation techniques for contaminated sites using AHP and TOPSIS[J]. Acta Pedologica Sinica, 2012, 49(6): 1088-1094.
    [26]
    吴汾奇, 张伟红, 董军, 等. 我国焦化场地地下水污染修复技术筛选方法及应用研究[J]. 中国环境科学, 2024, 1-13. WU F Q, ZHANG W H, DONG J, et al. Screening method and application research on groundwater pollution remediation technology for coking sites in China[J]. China Environmental Science, 2024, 1

    -13.
    [27]
    中华人民共和国自然资源部. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国质检出版社, 2017.
    [28]
    中华人民共和国生态环境部. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002.
    [29]
    中华人民共和国生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB 36600—2018[S]. 北京: 中国环境出版社, 2018.
    [30]
    北京市质量技术监督局. 场地土壤环境风险评价筛选值: DB11/T 811—2011[S]. 北京: 北京市质量技术监督局, 2011.
    [31]
    河南省生态环境厅. 展览会用地土壤环境质量评价标准(暂行): HJ 350—2007[S].北京: 中国环境科学出版社, 2007.
    [32]
    中华人民共和国环境保护部. 工业企业场地环境调查评估与修复工作指南(试行)[Z]. 北京: 环境保护部, 2014.
    [33]
    孙志斌, 王岽, 郦和生. 石化行业土壤修复技术需求分析与建议[J]. 石化技术, 2021, 28(3): 109-111

    ,74. SUN Z B, WANG D, LI H S, et al. Soil remediation technology demand analysis and suggestions for petrochemical industry[J]. Petrochemical Industry Technology, 2021, 28(3): 109-111,74.
    [34]
    谭海涛, 刘涛, 曹兴涛, 等. 石化场地土壤与地下水污染防控研究进展[J]. 应用化工, 2020, 9(8): 2112-2115

    ,2121. TAN H T, LIU T, CAO X T, et al. Research progress of soil and groundwater environment conservation for petrochemical site[J]. Applied Chemical Industry, 2020, 9(8): 2112-2115,2121.
    [35]
    李雪, 杨俊杰. 工业污染场地修复技术、现状及展望[J]. 河南科技, 2019, (16): 147-149. LI X, YANG J J. Discussion on technologies, current state and prospect of industrial contaminated sites remediation[J]. Henan Science and Technology, 2019

    , (16): 147-149.
    [36]
    吴敏. 工业污染场地修复技术的筛选-以福建省泉州市某工业污染场地为例[J]. 水土保持通报, 2018, 38(6): 195-199.

    WU M. Remediation technique screening on industrial soil-polluted site: a case study of industrial soil-polluted site in Quanzhou City of Fujian Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 195-199.
    [37]
    WEN D, FU R, LI Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review[J]. Journal of Hazardous Materials, 2020, 401: 123345.
    [38]
    许增光. 原位阻隔技术在遗留污染场地地下水治理中的应用[J]. 化学工程与装备, 2022(2): 233-235. XU Z G. Application of in-situ barrier technology in groundwater treatment of contaminated sites[J]. Chemical Engineering & Equipment, 2022

    (2): 233-235.
    [39]
    王劲楠, 吴玉锋, 李良忠, 等. 场地重金属复合污染阻隔技术研究进展[J]. 环境工程, 2022, 40(4): 244-253.

    WANG J N, WU Y F, LI L Z, et al. Research progress of barrier technologies for site combined heavy metal pollution[J]. Environmental Engineering, 2022, 40(4): 244-253.
    [40]
    袁芳沁. 重金属污染场地固化稳定化修复工程案例[J]. 湖南有色金属, 2023, 39(4): 80-84.

    YUAN F Q. Case study on solidification and stabilization restoration engineering for heavy contaminated sites[J]. Hunan Nonferrous Metals, 2023, 39(4): 80-84.
    [41]
    王玉鹏, 宋树祥, 王薇, 等. 淋洗技术在污染土壤修复中的研究应用[J]. 广东化工, 2024, 51(10): 80,99

    -100. WANG Y P, SONG S X, WANG W, et al. Leaching technology in remediation of contaminated soil research and application[J]. Guangdong Chemical Industry, 2024, 51(10): 80,99-100.
    [42]
    钱涌. 土壤与地下水有机污染的化学及生物修复技术分析[J]. 皮革制作与环保科技, 2024, 5(13): 88-90.

    QIAN Y. Analysis of chemical and bioremediation technologies for organic pollution in soil and groundwater[J]. Leather Manufacture and Environmental Technology, 2024, 5(13): 88-90.
    [43]
    马路, 江绪安. 水泥窑协同处置污染土壤技术及应用[J]. 广东化工, 2023, 50(1): 182-183

    ,145. MA L, JIANG X A. Application of co-processing polluted soil in Cement Kiln[J]. Guangdong Chemical Industry, 2023, 50(1): 182-183,145.
    [44]
    WHELAN M J, COULON F, HINCE G, et al. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions[J]. Chemosphere, 2015.131:232-240.
    [45]
    ROMINA L D, LUCAS R, ARIEL C, et al. Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil[J]. Polar Biology, 2015, 38(5): 677-687.
    [46]
    王栋. 石油化工企业原址土壤修复过程中废气治理案例研究[J]. 石油炼制与化工, 2021, 52(6): 112-116.

    WANG D. Case study of the exhaust gas treatment during soil remediation at the original sites of petrochemical enterprises[J]. Petroleum Processing and Petrochemicals, 2021, 52(6): 112-116.
    [47]
    刘锋平, 孙宁, 呼红霞, 等. 基于AHP-TOPSIS的在产企业地下水铁锰污染修复技术比选[J]. 环境工程技术学报, 2022, 12(5): 1572-1579.

    LIU F P, SUN N, HU H X, et al. AHP-TOPSIS-based technology comparison for remediation of iron and manganese contaminated groundwater for operating enterprises[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1572-1579.
    [48]
    徐文华, 陈海燕, 张育平, 等. 一种基于中介真值程度度量的模糊综合评价方法[J]. 计算机科学, 2016, 43(2): 204-209.

    XU W H, CHEN H Y, ZHANG Y P, et al. Fuzzy comprehensive evaluation method based on measure of medium truth degree[J]. Computer Science, 2016, 43(2): 204-209.
    [49]
    王恒田, 杨晓龙. 基于网络层次分析法的平价上网光伏电站站址优选的决策研究[J]. 太阳能, 2020, (12): 24-32. WANG H T, YANG X L. Decision making research on site optimization of PV power station with grid-parity based on ANP method[J]. Solar Energy, 2020

    , (12): 24-32.
    [50]
    胡霞, 钟文杰, 程静静. 基于AHP和熵权法的煤矿安全态势评价模型[J]. 煤矿安全, 2021, 52(2): 248-252.

    HU X, ZHONG W J, CHENG J J. Situational evaluation model of coal mine safety based on AHP and entropy weight method[J]. Safety in Coal Mines, 2021, 52(2): 248-252.
    [51]
    李忱昊. 基于AHP和熵权法的东北区域土壤修复技术筛选研究[D]. 阜新: 辽宁工程技术大学, 2022. LI C H. Screening of soil remediation techniques in Northeast China based on AHP and entropy weight method[D]. Fuxin: Liaoning Technical University, 2022.
    [52]
    苏强, 姜媛媛. 基于相对熵ANP-反熵权法的配电网隐患评估[J]. 邵阳学院学报: 自然科学版, 2021, 18(4): 14-23.

    SU Q, JIANG Y Y. Hidden danger assessment for distribution network based on relative entropy ANP and anti-entropy weight method[J]. Journal of Shaoyang University: Natural Science Edition, 2021, 18(4): 14-23.
    [53]
    蒋文强. 基于变异系数法的地下矿山采矿方法优选研究[J]. 冶金与材料, 2023, 43(6): 44-45

    ,114. JIANG W Q. Research on optimization of underground mining method based on coefficient of variation method[J]. Metallurgy and Materials, 2023, 43(6): 44-45,114.
    [54]
    王彦敏, 刘天浩, 董晨磊, 等. 基于信息熵权-复相关系数法的煤层底板突水危险性评价[J]. 现代矿业, 2021, 37(2): 173-177.

    WANG Y M, LIU T H, DONG C L, et al. Risk assessment of water inrush from coal floor based on information entropy weight complex correlation coefficient method[J]. Modern Mining, 2021, 37(2): 173-177.
    [55]
    颜惠琴, 牛万红, 韩惠丽. 基于主成分分析构建指标权重的客观赋权法[J]. 济南大学学报: 自然科学版, 2017, 31(6): 519-523.

    YAN H Q, NIU W H, HAN H L, et al. Objective weight method based on principal component analysis to establish index weight[J]. Journal of University of Jinan: Science and Technology, 2017, 31(6): 519-523.
    [56]
    朱辉. 我国台湾地区民营银行经营绩效评价[D]. 成都: 西南财经大学, 2016. ZHU H. The Operating Performance Evaluation of Private Banks in Taiwan, China: An Empirical Study Based on Factor Analysis and Entropy Weighting Method[D]. Chengdu: Southwest University of Finance and Economics, 2016.
    [57]
    周沅桢, 和小娟, 王泽宇, 等. 基于CRITIC赋权法的细支烟物理指标综合质量评价研究[J]. 包装工程, 2022, 43(9): 176-183.

    ZHOU Y Z, HE X J, WANG Z Y, et al. Comprehensive quality assessment for physical indexes of slim cigarette based on CRITIC weighting approach[J]. Packaging Engineering, 2022, 43(9): 176-183.
    [58]
    陶欢, 廖晓勇, 阎秀兰, 等. 应用多属性决策分析法筛选污染场地土壤修复技术[J]. 环境工程学报, 2017, 11(8): 4850-4860.

    TAO H, LIAO X Y, YAN X L, et al. Application of multiple attributes decision analysis to selection of soil remediation technologies for contaminated sites[J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4850-4860.
    [59]
    SUN C C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods[J]. Expert Systems with Applications, 2010, 37(12): 7745-7754.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return