| Citation: | ZHANG Liang, YANG Bowen, LIU Yuheng, ZHANG Yu, GAO Yu, LI Jiacheng, LI Junchen, LIN Sijie. A monitoring technique for bioreactors based on machine vision[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 1-10. doi: 10.13205/j.hjgc.202503001 |
| [1] |
GRESCH M,ARMBRUSTER M,BRAUN D,et al. Effects of aeration patterns on the flow field in wastewater aeration tanks[J]. Water Research,2011,45(2):810-818.
|
| [2] |
PIOTROWSKI R,UJAZDOWSKI T. Designing control strategies of aeration system in biological WWTP[J]. Energies,2020,13(14):3619.
|
| [3] |
LI J,LIU Y,JIANG H,et al. A multi-view image feature fusion network applied in analysis of aeration velocity for WWTP[J]. Water,2022,14(3):345.
|
| [4] |
VILLEZ K,VANROLLEGHEM P A,COROMINAS L. Optimal flow sensor placement on wastewater treatment plants[J]. Water Research,2016,101:75-83.
|
| [5] |
LIU C M,CHAI L P,LI Y,et al. Aeration state detection and prediction analysis based on image recognition and regression calculation[C]// Procedings of the 2022 China Automation,Xiamen,2022. 刘成明,柴立平,李跃,等. 基于图像识别与回归计算的曝气状态检测与预测分析[C]// 2022中国自动化大会,厦门,2022.
|
| [6] |
LI Y H,WANG X,ZHAO Z X,et al. Lagoon water quality monitoring based on digital image analysis and machine learning estimators[J]. Water Research,2020,172:115471.
|
| [7] |
KANG D,LIN Q,XU D,et al. Color characterization of anammox granular sludge:Chromogenic substance,microbial succession and state indication[J]. Science of the Total Environment,2018,642:1320-1327.
|
| [8] |
LEE W H,PARK C Y,DIAZ D,et al. Predicting bilgewater emulsion stability by oil separation using image processing and machine learning[J]. Water Research,2022,223:118977.
|
| [9] |
RAWAT W,WANG Z H. Deep convolutional neural networks for image classification:A comprehensive review[J]. Neural Computation,2017,29(9):2352-2449.
|
| [10] |
KRAUSE L M K,KOC J,ROSENHAHN B,et al. Fully convolutional neural network for detection and counting of diatoms on coatings after short-term field exposure[J]. Environmental Science& Technology,2020,54(16):10022-10030.
|
| [11] |
MORENO-RODENAS A M,DUINMEIJER A,CLEMENS F. Deep-learning based monitoring of FOG layer dynamics in wastewater pumping stations[J]. Water Research,2021,202:117482.
|
| [12] |
WU Y,ZHANG X,XIAO Y,et al. Attention neural network for water image classification under IoT environment[J]. Applied Sciences,2020,10(3):909.
|
| [13] |
HASSAN S I,DANG L M,MEHMOOD I,et al. Underground sewer pipe condition assessment based on convolutional neural networks[J]. Automation in Construction,2019,106:102849.
|
| [14] |
BAI R C,WANG K,YU F W. Intelligent sorting system for household waste based on ResNet_Vd model[J]. Environmental Engineering,2023,41(S2):1030-1033. 柏润泚,王凯,俞范文. 基于ResNet_Vd模型的生活垃圾智能分拣系统[J]. 环境工程,2023,41(S2):1030-1033.
|
| [15] |
LIU Z,GAO D M. Application and comparison of different deep learning models in the identification of kitchen waste types[J]. Environmental Engineering,2024,42(03):254-260. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较[J]. 环境工程,2024,42(3):254-260.
|
| [16] |
JIN P W,YAO Y,LIANG X Y,et al. Research progress on garbage image recognition[J]. Environmental Engineering,2022,40(1):196-206. 金佩薇,姚燕,梁晓瑜,等. 垃圾图像识别研究进展[J]. 环境工程,2022,40(1):196-206.
|
| [17] |
PYO J,CHO K H,KIM K,et al. Cyanobacteria cell prediction using interpretable deep learning model with observed,numerical,and sensing data assemblage[J]. Water Research,2021,203:117483.
|
| [18] |
LI Y Y,LIU H L. Prediction of total phosphorus in rivers using time convolutional network based on attention mechanism[J]. Environmental Engineering,2023,41(5):163-171. 黎园园,刘海隆. 基于注意力机制的时间卷积网络河流总磷预测[J]. 环境工程,2023,41(5):163-171.
|
| [19] |
YU S T,LIU P. Prediction of PM2.5 concentration in Beijing based on long short term memory network-convolutional neural network(LSTM-CNN)[J]. Environmental Engineering,2020,38(6):176-180,166. 于伸庭,刘萍. 基于长短期记忆网络-卷积神经网络(LSTM-CNN)的北京市PM2.5浓度预测[J]. 环境工程,2020,38(6):176-180,166.
|
| [20] |
IOFFE S,SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// proceedings of the 32nd International Conference on Machine Learning,Lille,2015.
|
| [21] |
HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science,2012,3(4):212-223.
|
| [22] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems,2012,25(2):84-90.
|
| [23] |
YANG Y. An evaluation of statistical approaches to text categorization[J]. Procedings of the AMIA Annual Fall Symposium,1999,1(1/2):358-362.
|
| [24] |
ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[J]. European Conference on Computer Vision,2014,8689:818-833.
|
| [25] |
ZHOU B,KHOSLA A,LAPEDRIZA A,et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,2016.
|
| [26] |
HUANG Y H. Research and Implementation of Sludge Settling Ratio Recognition based on Computer Vision[D]. Hangzhou:Zhejiang Gongshang University,2023. 黄勇昊. 基于计算机视觉的污泥沉降比识别研究与实现[D]. 杭州:浙江工商大学,2023.
|
| [27] |
GAO Y T. Research on Data-Driven Intelligent Recognition and Control Optimization of Sludge Expansion[D]. Beijing:North China University of Technology,2024. 郜煜涛. 基于数据驱动的污泥膨胀智能识别与控制优化研究[D]. 北京:北方工业大学,2024.
|
| [28] |
WANG J H,LIAO W S,LI H M,et al. Data augmentation method supporting intelligent management of sewage treatment plants under data defect conditions[J]. Environmental Engineering,2024,42(6):153-159. 王建辉,廖万山,李慧敏,等. 数据缺陷条件下支持污水处理厂智能管理的数据增强方法[J]. 环境工程,2024,42(6):153-159.
|
| [29] |
WANG Y,SU X L,LIU J,et al. AI based sewage treatment monitoring and automatic regulation technology[J]. New Technologies and Products in China,2024,(13):115-117,127. 王勇,苏晓亮,刘佳,等. 基于AI的污水处理监控与自动调节技术[J]. 中国新技术新产品,2024,(13):115-117,127.
|
| [30] |
QI M,CHEN Y B,ZHANG X P,et al. Construction and application of a smart sewage treatment plant control platform based on multi-source information fusion[J]. Water Supply and Drainage,2020,56(1):120-124. 齐鸣,陈燕波,张辛平,等. 基于多源信息融合的智慧污水处理厂管控平台建设与应用[J]. 给水排水,2020,56(1):120-124.
|
| [31] |
WANG X S,CHEN Q S,SHEN Y W,et al. Multi-data fusion online diagnostic system for wastewater plant fan failures[J]. Industrial Control Computers,2022,35(1):31-34. 汪喜生,陈秋忠,沈怡雯,等. 多数据融合的污水厂风机故障在线诊断系统[J]. 工业控制计算机,2022,35(1):31-34.
|
| [32] |
XIAO L Z,HU F. Research on spam detection based on LGD-YOLO high-precision lightweight target detection network[J]. Environmental Engineering,2024,42(6):169-177. 肖立中,胡凡. 基于LGD-YOLO高精度轻量化目标检测网络的垃圾检测研究[J]. 环境工程,2024,42(6):169-177.
|
| [33] |
WANG L,YU K,CHEN H,et al. Application of unmanned inspection of water supply pipe network based on the fusion of fiber optic sensing and video AI technology[J]. Environmental Engineering,2023,41(11):59-63. 王蕾,俞坤,陈辉,等. 基于光纤传感与视频AI技术融合的供水管网无人化巡检应用[J]. 环境工程,2023,41(11):59-63.
|