| Citation: | LI Qiannan, CHEN Yinguang, ZHANG Qingran. Research progress on bio-photo/electrocatalytic hybrid systems for efficient CO2 reduction[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 77-89. doi: 10.13205/j.hjgc.202503007 |
| [1] |
MAC D N,FENNELL P S,SHAH N,et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change,2017,7(4):243-249.
|
| [2] |
MELTON L. From air to your plate:Tech startups making food from atmospheric CO2[J]. Nature Biotechnology,2023,41(10):1359-1361.
|
| [3] |
KONDRATENKO E V,MUL G,BALTRUSAITIS J,et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic,photocatalytic and electrocatalytic processes[J]. Energy& Environmental Science,2013,6(11):3112-3135.
|
| [4] |
HEPBURN C,ADLEN E,BEDDINGTON J,et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87-97.
|
| [5] |
CHEN L,TREMBLAY P L,MOHANTY S,et al. Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine[J]. Journal of Materials Chemistry A,2016,4(21):8395-8401.
|
| [6] |
SCHMID J S D A,HAUER B,KIENER A,et al. Industrial biocatalysis today and tomorrow[J]. Nature,2001,409:258-268.
|
| [7] |
SHELDON R A,WOODLEY J M. Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews,2017,118(2):801-838.
|
| [8] |
de CARVALHO C C C R. Enzymatic and whole cell catalysis:Finding new strategies for old processes[J]. Biotechnology Advances,2011,29(1):75-83.
|
| [9] |
BASSEGODA A,MADDEN C,WAKERLEY D W,et al. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase[J]. Journal of the American Chemical Society,2014,136(44):15473-15476.
|
| [10] |
WANG Q,KALATHIL S,PORNRUNGROJ C,et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization[J]. Nature Catalysis,2022,5(7):633-641.
|
| [11] |
WU Y,CAO S,HOU J,et al. Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction[J]. Advanced Energy Materials,2020,10(29):2000588.
|
| [12] |
ZHANG Q,MUSGRAVE C B,SONG Y,et al. A covalent molecular design enabling efficient CO2 reduction in strong acids[J]. Nature Synthesis,2024,3(10):1231-1242.
|
| [13] |
WEI J,LIANG P,HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology,2011,102(20):9335-9344.
|
| [14] |
de LUNA P,HAHN C,HIGGINS D,et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science,2019,364(6438).
|
| [15] |
LUAN L,JI X,GUO B,et al. Bioelectrocatalysis for CO2 reduction:Recent advances and challenges to develop a sustainable system for CO2 utilization[J]. Biotechnology Advances,2023,63.
|
| [16] |
LIU Y,CRUZ-MORALES P,ZARGAR A,et al. Biofuels for a sustainable future[J]. Cell,2021,184(6):1636-1647.
|
| [17] |
BIAN J,AN X,ZHAO J,et al. Directional electron transfer in enzymatic nano‐bio hybrids for selective photobiocatalytic conversion of nitrate[J]. Angewandte Chemie International Edition,2024.
|
| [18] |
GREEN D E,STICKLAND L H. Studies on reversible dehydrogenase systems:The reversibility of the hydrogenase system of Bact. coli.1[J]. Biochemical Journal,1934,28(3):898-900.
|
| [19] |
ALVAREZ-MALMAGRO J,OLIVEIRA A R,GUTIéRREZ-SáNCHEZ C,et al. Bioelectrocatalytic activity of W-formate dehydrogenase covalently immobilized on functionalized gold and graphite electrodes[J]. ACS Applied Materials& Interfaces,2021,13(10):11891-11900.
|
| [20] |
SZCZESNY J,RUFF A,OLIVEIRA A R,et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes[J]. ACS Energy Letters,2020,5(1):321-327.
|
| [21] |
CHEN H,DONG F,MINTEER S D. The progress and outlook of bioelectrocatalysis for the production of chemicals,fuels and materials[J]. Nature Catalysis,2020,3(3):225-244.
|
| [22] |
TORELLA J P,GAGLIARDI C J,CHEN J S,et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system[J]. Proceedings of the National Academy of Sciences,2015,112(8):2337-2342.
|
| [23] |
SCHWANDER T,SCHADA V B L,BURGENER S,et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science,2016,354(6314):900-904.
|
| [24] |
CHEN X,CAO Y,LI F,et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate)via CO2 bioreduction by engineered Ralstonia eutropha[J]. ACS Catalysis,2018,8(5):4429-4437.
|
| [25] |
GLEIZER S,BEN-NISSAN R,BAR-ON Y M,et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell,2019,179(6):1255-1263.e12.
|
| [26] |
CAI T,SUN H,QIAO J,et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science,2021,373(6562):1523-1527.
|
| [27] |
ZHENG T,ZHANG M,WU L,et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis,2022,5(5):388-396.
|
| [28] |
CESTELLOS-BLANCO S,ZHANG H,KIM J M,et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis,2020,3(3):245-255.
|
| [29] |
LEE Y S,BAEK S,LEE H,et al. Construction of uniform monolayer-and orientation-tunable enzyme electrode by a synthetic glucose dehydrogenase without electron-transfer subunit via optimized site-specific gold-binding peptide capable of direct electron transfer[J]. ACS Applied Materials& Interfaces,2018,10(34):28615-28626.
|
| [30] |
MURATA K,KAJIYA K,NAKAMURA N,et al. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell[J]. Energy& Environmental Science,2009,2(12):1280-1285.
|
| [31] |
REGUERA G,MCCARTHY K D,MEHTA T,et al. Extracellular electron transfer via microbial nanowires[J]. Nature,2005,435(7045):1098-1101.
|
| [32] |
SUMMERS Z M,FOGARTY H E,LEANG C,et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science,2010,330(6009):1413-1415.
|
| [33] |
ROTARU A E,SHRESTHA P M,LIU F,et al. A new model for electron flow during anaerobic digestion:Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy& Environmental Science,2014,7(1):408-415.
|
| [34] |
SHI L,DONG H,REGUERA G,et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology,2016,14(10):651-662.
|
| [35] |
LI S L,FREGUIA S,LIU S M,et al. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes[J]. Biosensors and Bioelectronics,2010,25(12):2651-2656.
|
| [36] |
GUAN X,ERŞAN S,HU X,et al. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids[J]. Nature Catalysis,2022,5(11):1019-1029.
|
| [37] |
YE J,WANG C,GAO C,et al. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nature Communications,2022,13(1):6612.
|
| [38] |
ZHANG R,HE Y,YI J,et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system[J]. Chem,2020,6(1):234-249.
|
| [39] |
ZHANG H,LIU H,TIAN Z,et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology,2018,13(10):900-905.
|
| [40] |
SAKAI H,NAKAGAWA T,TOKITA Y,et al. A high-power glucose/oxygen biofuel cell operating under quiescent conditions[J]. Energy& Environmental Science,2009,2(1):133-138.
|
| [41] |
XIE Y,ERŞAN S,GUAN X,et al. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials–biology hybrids[J]. Proceedings of the National Academy of Sciences,2023,120(42):e2308373120.
|
| [42] |
OKAMOTO A,SAITO K,INOUE K,et al. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species[J]. Energy& Environmental Science,2014,7(4):1357-1361.
|
| [43] |
SHERBO R S,SILVER P A,NOCERA D G. Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system[J]. Proceedings of the National Academy of Sciences,2022,119(37):e2210538119.
|
| [44] |
KORNIENKO N,SAKIMOTO K K,HERLIHY D M,et al. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences,2016,113(42):11750-11755.
|
| [45] |
HAN H-X,TIAN L-J,LIU D-F,et al. Reversing electron transfer chain for light-driven hydrogen production in biotic–abiotic hybrid systems[J]. Journal of the American Chemical Society,2022,144(14):6434-6441.
|
| [46] |
SABOE P O,CONTE E,FARELL M,et al. Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces[J]. Energy& Environmental Science,2017,10(1):14-42.
|
| [47] |
CONTALDO U,GUIGLIARELLI B,PERARD J,et al. Efficient electrochemical CO2/CO interconversion by an engineered carbon monoxide dehydrogenase on a gas-diffusion carbon nanotube-based bioelectrode[J]. ACS Catalysis,2021,11(9):5808-5817.
|
| [48] |
CHEN Y,LI P,NOH H,et al. Stabilization of formate dehydrogenase in a metal–organic framework for bioelectrocatalytic reduction of CO2[J]. Angewandte Chemie International Edition,2019,58(23):7682-7686.
|
| [49] |
ZHANG P,CHEN K,XU B,et al. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system[J]. Chem,2022,8(12):3363-3381.
|
| [50] |
LIU C,GALLAGHER J J,SAKIMOTO K K,et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters,2015,15(5):3634-3639.
|
| [51] |
YADAV R,CHATTOPADHYAY B,KIRAN R,et al. Microbial electrosynthesis from carbon dioxide feedstock linked to yeast growth for the production of high-value isoprenoids[J]. Bioresource Technology,2022,363:127906.
|
| [52] |
NEUPANE S,PATNODE K,LI H,et al. Enhancing enzyme immobilization on carbon nanotubes via metal–organic frameworks for large-substrate biocatalysis[J]. ACS Applied Materials& Interfaces,2019,11(12):12133-12141.
|
| [53] |
LIM J,CHOI S Y,LEE J W,et al. Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,2023,120(14):e2221438120.
|
| [54] |
LIU C,COLóN B C,ZIESACK M,et al. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science,2016,352(6290):1210-1213.
|
| [55] |
CHEN H,LI J,FAN Q,et al. A feasible strategy for microbial electrocatalytic CO2 reduction via whole-cell-packed and exogenous-mediator-free rGO/Shewanella biohydrogel[J]. Chemical Engineering Journal,2023,460.
|
| [56] |
LI H,OPGENORTH P H,WERNICK D G,et al. Integrated Electromicrobial Conversion of CO2 to Higher Alcohols[J]. Science,2012,335(6076):1596-1596.
|
| [57] |
SHENG H,LIU C. Spatial decoupling boosts CO2 electro-biofixation[J]. Nature Catalysis,2022,5(5):357-358.
|
| [58] |
LIU C,SAKIMOTO K K,COLóN B C,et al. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system[J]. Proceedings of the National Academy of Sciences,2017,114(25):6450-6455.
|
| [59] |
RODRIGUES R M,GUAN X,IñIGUEZ J A,et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis,2019,2(5):407-414.
|
| [60] |
MOLITOR B,MISHRA A,ANGENENT L T. Power-to-protein:Converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess[J]. Energy& Environmental Science,2019,12(12):3515-3521.
|
| [61] |
HAAS T,KRAUSE R,WEBER R,et al. Technical photosynthesis involving CO2 electrolysis and fermentation[J]. Nature Catalysis,2018,1(1):32-39.
|
| [62] |
GUO J,SUÁSTEGUI M,SAKIMOTO K K,et al. Light-driven fine chemical production in yeast biohybrids[J]. Science,2018,362(6416):813-816.
|