Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
SUN Guangdong, MA Junyi, HAO Shu, DONG He, ZHAO Xinru, CHAI Qianglong, DANG Yan. Research progress on key influencing factors of methane production efficiency in anaerobic digestion of livestock and poultry manure[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 114-129. doi: 10.13205/j.hjgc.202503010
Citation: SUN Guangdong, MA Junyi, HAO Shu, DONG He, ZHAO Xinru, CHAI Qianglong, DANG Yan. Research progress on key influencing factors of methane production efficiency in anaerobic digestion of livestock and poultry manure[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 114-129. doi: 10.13205/j.hjgc.202503010

Research progress on key influencing factors of methane production efficiency in anaerobic digestion of livestock and poultry manure

doi: 10.13205/j.hjgc.202503010
  • Received Date: 2025-01-21
  • Accepted Date: 2025-02-18
  • Rev Recd Date: 2025-02-09
  • Available Online: 2025-06-07
  • Publish Date: 2025-03-01
  • Under the background of the gradual scale of livestock and poultry breeding methods, the generated manure has the characteristics of large centralized emissions and strong disposal demand, which provides an opportunity for the use of anaerobic digestion technology to dispose of livestock and poultry manure to achieve the production of biogas energy and maximize productivity benefits, which fully meets the strategic needs of China's energy structure optimization and carbon neutrality. However, due to the complex components of livestock and poultry manure, the various operating conditions of anaerobic digestion regulation, and the limitation of the reaction rate of the technology itself, there are defects of low gas production efficiency and poor process stability in the process of anaerobic digestion disposal of livestock and poultry manure, so it is particularly important to understand the key factors affecting its methanogenic efficiency. This paper analyzes and introduces the characteristics of different livestock and poultry manures and the reasons influencing their methane-producing potential through anaerobic digestion. It reviews the research on the impacts of major environmental factors such as temperature, pH, and ammonia-nitrogen, as well as external control factors such as feeding load and feeding methods on methane-producing efficiency and microbial community abundance in the anaerobic digestion of livestock and poultry manures in recent years. It also explores the roles of auxiliary methods, such as adding functional microbial agents and conductive materials in enhancing the methane-producing efficiency of the system and the feedback mechanisms of system microorganisms. Moreover, it looks ahead to the key research directions in the future, providing a reference for the theoretical research and engineering applications of anaerobic digestion technology for livestock and poultry manures in the future.
  • loading
  • [1]
    Ministry of Agriculture,National Development and Reform Commission,Ministry of Finance,etc. Notice on Printing and Distributing the Plan for Promoting the Pilot Program of Agricultural Waste Resource Utilization[R]. Gazette of the Ministry of Agriculture of the People's Republic of China,2016(10):4-7. 农业部,国家发展改革委,财政部,等. 关于印发《关于推进农业废弃物资源化利用试点的方案》的通知[R]. 中华人民共和国农业部公报,2016(10):4-7.
    [2]
    Ministry of Ecology and Environment,National Bureau of Statistics,Ministry of Agriculture and Rural Affairs,et al. The second national pollution source census bulletin[J]. Environmental Protection,2020,48(18):8-10. 生态环境部,国家统计局,农业农村部 等. 第二次全国污染源普查公报[J]. 环境保护,2020,48(18):8-10.
    [3]
    WU D,LI L,PENG Y,et al. State indicators of anaerobic digestion:A critical review on process monitoring and diagnosis[J]. Renewable and Sustainable Energy Reviews,2021,148:111260.
    [4]
    WU H W,SUN X Q,LIANG B W,et al. Analysis of the current situation of livestock and poultry manure pollution and its treatment and resource utilization in China[J]. Journal of Agro-Environment Science,2020,39(6):1168-1176. 吴浩玮,孙小淇,梁博文,等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报,2020,39(6):1168-1176.
    [5]
    CHENG D,XU W D,Zhang Q C,et al. Research progress on influencing factors of anaerobic digestion[J]. Guangdong Chemical Industry,2024,51(18):62-65. 程东,徐伟东,张启成,等. 厌氧消化影响因素的研究进展[J]. 广东化工,2024,51(18):62-65.
    [6]
    XIA Y,MASSÉ D I,MCALLISTER T A,et al. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production[J]. Waste Management,2012,32(3):404-409.
    [7]
    LANGE M,AHRING B K. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea[J]. FEMS Microbiol Rev,2001,25(5):553-571.
    [8]
    Ren S J,KONG L D,LIU J,et al. Research progress on the classification and metabolic pathways of Methanogenic archaea[J]. China Biotechnology,2024,44(9):100-112. 任师杰,孔令豆,刘骏,等. 产甲烷古菌的分类及代谢途径研究进展[J]. 中国生物工程杂志,2024,44(9):100-112.
    [9]
    WANG L,ZHOU Q,LI F. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production[J]. Biomass and Bioenergy,2006,30(2):177-182.
    [10]
    ZOU C,LIN M,MA F,et al. Development,challenges and strategies of natural gas industry under carbon neutral target in China[J]. Petroleum Exploration and Development,2024,51(2):476-497.
    [11]
    LI F Y,WU X,LI J S,et al. Estimation of carbon sequestration and nutrient content of biochar from livestock and poultry manure and prediction of potential risks in field application[J]. Journal of Agro-Environment Science,2019,38(9):2202-2209. 李飞跃,吴旋,李俊锁,等. 畜禽粪便生物炭固碳量、养分量的估算及田间施用潜在风险预测[J]. 农业环境科学学报,2019,38(9):2202-2209.
    [12]
    ILELEJI K. E. M C J D. Basics of energy production through anaerobic digestion of livestock manure[J]. Bioenergy,2015(1):287-295.
    [13]
    HAN Y X,ZHANG C M,CHEN X L,et al. Comparison of methane production characteristics of different agricultural organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(1):258-264. 韩娅新,张成明,陈雪兰,等. 不同农业有机废弃物产甲烷特性比较[J]. 农业工程学报,2016,32(1):258-264.
    [14]
    MU L,XU F L,CHENG Z J,et al. Research progress on anaerobic digestion technology of rumen microorganisms for degrading lignocellulosic wastes[J]. Energy Environmental Protection,2024,38(5):78-91. 穆兰,徐凤莲,程占军,等. 瘤胃微生物厌氧消化降解木质纤维素废弃物技术研究进展[J]. 能源环境保护,2024,38(5):78-91.
    [15]
    SHAO X H,HUANG J P. Gas Production potential of ten kinds of biogas fermentation raw materials[J]. Journal of Jiangxi Academy of Sciences,1984(3):56-59. 邵希豪,黄金平. 十种沼气发酵原料的产气潜力[J]. 江西省科学院院刊,1984(3):56-59.
    [16]
    JIAN S X,MA W L,LI R Q,et al. Experimental study on maximum methane production capacity of cow dung and its fermentation process[J]. China Biogas,2013,31(2):21-25. 简树贤,马文林,李荣旗,等. 牛粪最大甲烷生产能力及其发酵过程实验研究[J]. 中国沼气,2013,31(2):21-25.
    [17]
    COARITA Fernandez H,TEIXEIRA Franco R,BAYARD R,et al. Mechanical pre-treatments evaluation of cattle manure before anaerobic digestion[J]. Waste and Biomass Valorization,2020,11(10):5175-5184.
    [18]
    SIDDIQUE M N I,WAHID Z A. Achievements and perspectives of anaerobic co-digestion:A review[J]. Journal of Cleaner Production,2018,194:359-371.
    [19]
    XING B,CAO S,HAN Y,et al. Stable and high-rate anaerobic co-digestion of food waste and cow manure:optimisation of start-up conditions[J]. Bioresource Technology,2020,307:123195.
    [20]
    DONG L F,FU M,CHEN T B,et al. Research progress on the community structure and diversity of dominant methanogenic bacteria in the rumen of ruminants[J]. Chinese Journal of Animal Nutrition,2019,31(9):3927-3935. 董利锋,付敏,陈天宝,等. 反刍动物瘤胃优势产甲烷菌菌群结构及多样性研究进展[J]. 动物营养学报,2019,31(9):3927-3935.
    [21]
    LIU X,JIANG X,LI Y,et al. Interaction effects of rumen microorganisms on methane generation and mitigation measures[C]// The 12th China Cattle Industry Development Conference,Zunyi,China,2017:6. 刘鑫,姜鑫,李洋,等. 瘤胃微生物对甲烷生成的互作效应及减排措施[C]// 第十二届中国牛业发展大会,遵义,2017:6.
    [22]
    KONRAD O,MARDER M,MÖRS J,et al. Digestates from the co-digestion of cattle rumen and manure improve the methane potential of maize silage[J]. Bioresource Technology Reports,2023,24:101625.
    [23]
    LIU Y C,MA W L. Research on the influence of organic components in pig manure on biogenic methane potential[J]. Environmental Science& Technology,2020,43(2):102-107. 刘翌晨,马文林. 猪粪中有机成分对生物产甲烷潜力的影响研究[J]. 环境科学与技术,2020,43(2):102-107.
    [24]
    NAGARAJAN D,KUSMAYADI A,YEN H,et al. Current advances in biological swine wastewater treatment using microalgae-based processes[J]. Bioresour Technol,2019,289:121718.
    [25]
    ZHENG W,LIU S L,JIN J P. Discussion on anaerobic digestion technology of manure water and sewage from pig,cattle and chicken farms under different manure cleaning processes[J]. Environmental Sanitation Engineering,2017,25(5):58-60. 郑苇,刘淑玲,靳俊平. 不同清粪工艺下猪、牛、鸡养殖场粪水和污水厌氧消化技术探讨[J]. 环境卫生工程,2017,25(5):58-60.
    [26]
    CHEN X,TU D Y,SUI Q W,et al. Influence of solid concentration on methane production characteristics of anaerobic digestion of pig manure[J]. Chinese Journal of Agrometeorology,2014,35(2):149-155. 陈欣,涂德浴,隋倩雯,等. 固体浓度对猪粪厌氧消化甲烷产出特性的影响[J]. 中国农业气象,2014,35(2):149-155.
    [27]
    LI J,GUO X H. Fermentation treatment methods and utilization of chicken manure[J]. Journal of Agricultural Sciences,2007,28(3):97-98. 李跻,郭旭宏. 鸡粪的发酵处理方法与利用[J]. 农业科学研究,2007,28(3):97-98.
    [28]
    WANG L,ZHANG Y D,MA B,et al. Resource utilization ways of chicken manure[J]. Journal of Animal Science and Veterinary Medicine,2016,35(6):81-82,84. 王磊,张永东,马斌,等. 鸡粪的资源化利用途径[J]. 畜牧兽医杂志,2016,35(6):81-82,84.
    [29]
    QIAO W,BI S J,YIN D M,et al. Methane fermentation gas production potential and kinetic characteristics of high-temperature anaerobic fermentation of chicken manure[J]. China Environmental Science,2018,38(1):234-243. 乔玮,毕少杰,尹冬敏,等. 鸡粪中高温厌氧甲烷发酵产气潜能与动力学特性[J]. 中国环境科学,2018,38(1):234-243.
    [30]
    FUCHS W,WANG X,GABAUER W,et al. Tackling ammonia inhibition for efficient biogas production from chicken manure:Status and technical trends in Europe and China[J]. Renewable and Sustainable Energy Reviews,2018,97:186-199.
    [31]
    SHAPOVALOV Y,ZHADAN S,BOCHMANN G,et al. Dry anaerobic digestion of chicken manure:a review[J]. Applied Sciences,2020,10(21):7825.
    [32]
    SONG Y P,QIAO W,HU W R,et al. Study on ammonia nitrogen tolerance of anaerobic digestion of chicken manure at high solid concentration:a case of long-term experiment[J]. China Biogas,2023,41(3):33-40. 宋亚朋,乔玮,胡婉蓉,等. 高固体浓度鸡粪厌氧消化氨氮耐受性能研究:以长期实验为例[J]. 中国沼气,2023,41(3):33-40.
    [33]
    BI S,WESTERHOLM M,QIAO W,et al. Enhanced methanogenic performance and metabolic pathway of high solid anaerobic digestion of chicken manure by Fe2+ and Ni2+ supplementation[J]. Waste Management,2019,94:10-17.
    [34]
    BI S,WESTERHOLM M,QIAO W,et al. Metabolic performance of anaerobic digestion of chicken manure under wet,high solid,and dry conditions[J]. Bioresour Technol,2020,296:122342.
    [35]
    HU W R. Study on the Influence of Hydraulic Retention Time on the Performance of High Solid Anaerobic Digestion of Chicken Manure[D]. Beijing:China University of Mining and Technology(Beijing),2021. 胡婉蓉. 水力停留时间对鸡粪高固体厌氧消化性能的影响研究[D]. 北京:中国矿业大学(北京),2021.
    [36]
    TIAN G L. Study on the Prokaryotic Community Dynamics in the Simulated System of Household Biogas Digesters in Subtropical Yunnan[D]. Kunming:Yunnan Normal University,2016. 田光亮. 云南亚热带户用沼气池模拟系统中原核生物群落动态研究[D]. 昆明:云南师范大学,2016.
    [37]
    ARIKAN O A,MULBRY W,LANSING S. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure[J]. Waste Management,2015,43:108-113.
    [38]
    ZHANG J,DONG H,LIU D,et al. Microbial reduction of Fe(III)in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta,2013,106:203-215.
    [39]
    TIAN Q,WANG J,FAN X L,et al. Methanogenic activity and microbial ecology of sediments from offshore oil and gas fields[J]. Environmental Science,2014,35(6). 田琪,王佳,范晓蕾,等. 海洋油气田沉积物产甲烷活性及微生物生态[J]. 环境科学,2014,35(6).
    [40]
    PRAKASH D,CHAUHAN S S,FERRY J G,et al. Life on the thermodynamic edge:Respiratory growth of an acetotrophic methanogen[J]. Science advances,2019,5(8):eaaw9059.
    [41]
    MA K,LIU X,DONG X. Methanobacterium beijingense sp. nov.,a novel methanogen isolated from anaerobic digesters[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(1):325-329.
    [42]
    LEE M Y,CHEON J H,HIDAKA T,et al. The performance and microbial diversity of temperature-phased hyperthermophilic and thermophilic anaerobic digestion system fed with organic waste[J]. Water Science and Technology,2008,57(2):283-289.
    [43]
    TAPIO I,SNELLING T J,STROZZI F,et al. The ruminal microbiome associated with methane emissions from ruminant livestock[J]. Journal of Animal Science and Biotechnology,2017,8(1).
    [44]
    MOCHIMARU H,TAMAKI H,KATAYAMA T,et al. Methanomicrobium antiquum sp. nov.,a hydrogenotrophic methanogen isolated from deep sedimentary aquifers in a natural gas field[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(11):4873-4877.
    [45]
    ZHOU L,LIU X,DONG X. Methanospirillum psychrodurum sp. nov.,isolated from wetland soil[J]. International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt_ 2):638-641.
    [46]
    LIU Z B,LIU X H,ZHOU T,et al. Influence of temperature on the operation performance and bacterial community structure of anaerobic biological filters for municipal sewage[J]. Environmental Science,2020,41(9):4141-4149. 刘智斌,刘秀红,周桐,等. 温度对城市污水厌氧生物滤池运行效果与菌群结构的影响[J]. 环境科学,2020,41(9):4141-4149.
    [47]
    WANG H,YANG G,LIU X G,et al. Study on the influence of temperature on the gas-producing ability of biogas bacterial community and the changes of the community[J]. Acta Agriculturae Borealioccidentalis Sinica,2008,17(5):294-297. 王华,杨光,刘小刚,等. 温度对沼气菌群产气能力的影响及菌群变化的研究[J]. 西北农业学报,2008,17(5):294-297.
    [48]
    WRÓBEL-KWIATKOWSKA M,JABŁOŃSKI S,SZPERLIK J,et al. Impact of CAD-deficiency in flax on biogas production[J]. Transgenic Research,2015,24(6):971-978.
    [49]
    RICHEN LIN J C L D. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges[J]. Chemical Engineering Journal,2018(5):173.
    [50]
    SAKAR S,YETILMEZSOY K,KOCAK E. Anaerobic digestion technology in poultry and livestock waste treatment— a literature review[J]. Waste Management& Research:The Journal for a Sustainable Circular Economy,2009,27(1):3-18.
    [51]
    TANG Y X,HAN Z G,JIANG X M,et al. Study on the optimal pH value for the aerobic treatment of anaerobic digestion liquid of pig farm wastewater[J]. China Biogas,2021,39(2):3-9. 唐宇轩,韩志刚,蒋小妹,等. 猪场废水厌氧消化液好氧处理最适pH值的研究[J]. 中国沼气,2021,39(2):3-9.
    [52]
    SUN M,LIU B,YANAGAWA K,et al. Effects of low pH conditions on decay of methanogenic biomass[J]. Water Research,2020,179:115883.
    [53]
    ZHAO W X,HUANG Z Y,HUANG J H,et al. Research progress on acid inhibition in anaerobic digestion[J]. Microbiology China,2020,47(10):3442-3450. 赵维鑫,黄志勇,黄津辉,等. 厌氧消化酸抑制研究进展[J]. 微生物学通报,2020,47(10):3442-3450.
    [54]
    MA J,FREAR C,WANG Z,et al. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio[J]. Bioresource Technology,2013,134:391-395.
    [55]
    JIANG J,ZHANG Y,LI K,et al. Volatile fatty acids production from food waste:effects of pH,temperature,and organic loading rate[J]. Bioresour Technol,2013,143:525-530.
    [56]
    JIAN LIN CHEN R O T W. Toxicants inhibiting anaerobic digestion:a review[J]. Biotechnology Advance,2014(10):5.
    [57]
    LIU J F. Research on the Influence of Different Nitrogen Sources on Anaerobic Digestion System and Their Transformation Mechanisms[D]. Kunming:Yunnan Normal University,2022. 刘健峰. 不同氮素对厌氧消化系统的影响及其转化机制研究[D]. 昆明:云南师范大学,2022.
    [58]
    FOTIDIS I A,KARAKASHEV D,KOTSOPOULOS T A,et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiol Ecol,2013,83(1):38-48.
    [59]
    NIU Q,QIAO W,QIANG H,et al. Microbial community shifts and biogas conversion computation during steady,inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J]. Bioresource Technology,2013,146:223-233.
    [60]
    NIU Q,KUBOTA K,QIAO W,et al. Effect of ammonia inhibition on microbial community dynamic and process functional resilience in mesophilic methane fermentation of chicken manure[J]. Journal of Chemical Technology& Biotechnology,2015,90(12):2161-2169.
    [61]
    MENG X S,ZHANG Y X,SUI Q W,et al. Influence of ammonia nitrogen concentration on anaerobic digestion of pig manure and the structure of methanogenic flora[J]. Chinese Journal of Environmental Engineering,2018,12(8):2346-2356. 孟晓山,张玉秀,隋倩雯,等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报,2018,12(8):2346-2356.
    [62]
    SINGH R,HANS M,KUMAR S,et al. Thermophilic anaerobic digestion:an advancement towards enhanced biogas production from lignocellulosic biomass[J]. Sustainability,2023,15(3):1859.
    [63]
    WANG H,FOTIDIS I A,ANGELIDAKI I. Ammonia–LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process[J]. Bioresource Technology,2016,209:282-289.
    [64]
    ZHANG Y H,PAN Y X,HE Y Q,et al. Influence of different nitrogen sources on ammonia inhibition in anaerobic fermentation of pig manure wastewater[J]. Chinese Journal of Environmental Engineering,2020,14(4):955-962. 张寓涵,潘云霞,贺亚清,等. 不同氮源对猪粪废水厌氧发酵中氨抑制效果的影响[J]. 环境工程学报,2020,14(4):955-962.
    [65]
    MENG X S. Research on Anaerobic Digestion Characteristics of High-solid-content Pig Manure and Its Ammonia Nitrogen Inhibition[D]. Beijing:China University of Mining and Technology(Beijing),2019. 孟晓山. 高含固率猪粪污厌氧消化特征及其氨氮抑制的研究[D]. 北京:北京矿业大学(北京),2019.
    [66]
    GAO W X,ZHANG K Q,LIANG J F,et al. Influence of ammonia stress on the anaerobic digestion performance of pig manure[J]. Journal of Agro-Environment Science,2015(10):1997-2003. 高文萱,张克强,梁军锋,等. 氨胁迫对猪粪厌氧消化性能的影响[J]. 农业环境科学学报,2015(10):1997-2003.
    [67]
    LU Z W,KONG D W,ZHANG K Q,et al. Ammonia stress effects of anaerobic fermentation of pig manure at different temperatures[J]. Chinese Journal of Environmental Engineering,2021,15(10):3297-3305. 卢振威,孔德望,张克强,等. 不同温度下猪粪厌氧发酵的氨胁迫效应[J]. 环境工程学报,2021,15(10):3297-3305.
    [68]
    GARCIA M L,ANGENENT L T. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment[J]. Water Research,2009,43(9):2373-2382.
    [69]
    NIU Q,TAKEMURA Y,KUBOTA K,et al. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure:Microbial community dynamics and process resilience[J]. Waste Management,2015,43:114-122.
    [70]
    DALKILIC K,UGURLU A. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system[J]. Journal of Bioscience and Bioengineering,2015,120(3):315-322.
    [71]
    NIE H,JACOBI H F,STRACH K,et al. Mono-fermentation of chicken manure:Ammonia inhibition and recirculation of the digestate[J]. Bioresource Technology,2015,178:238-246.
    [72]
    SUN C,CAO W,BANKS C J,et al. Biogas production from undiluted chicken manure and maize silage:A study of ammonia inhibition in high solids anaerobic digestion[J]. Bioresource Technology,2016,218:1215-1223.
    [73]
    XU Y P. Influence of HRT on the Operation Efficiency of Anaerobic Digestion System and the Propionate-oxidizing Bacterial Community[D]. Harbin:Harbin Institute of Technology,2011. 许一平. HRT对厌氧消化系统运行效能及丙酸氧化菌群的影响[D]. 哈尔滨:哈尔滨工业大学,2011.
    [74]
    DAI X. Research on the Influence of Different Load-increasing Methods Inducing Overload on the Stability of Anaerobic Digestion of Pig Manure and Its Microbial Community Structure[D]. Nanchong:China West Normal University,2022. 代曦. 不同负荷提升方式诱导超负荷对猪粪厌氧消化稳定性及其微生物群落结构影响研究[D]. 南充:西华师范大学,2022.
    [75]
    LÜ W,ZHANG W,YU Z. Volume ratios between the thermophilic and the mesophilic digesters of a temperature-phased anaerobic digestion system affect their performance and microbial communities[J]. N Biotechnol,2016,33(1):245-254.
    [76]
    BI S,HONG X,YANG H,et al. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste[J]. Renewable Energy,2020,150:213-220.
    [77]
    LI Q,YUWEN C,CHENG X,et al. Responses of microbial capacity and community on the performance of mesophilic co-digestion of food waste and waste activated sludge in a high-frequency feeding CSTR[J]. Bioresource Technology,2018,260:85-94.
    [78]
    DENNEHY C,LAWLOR P G,MCCABE M S,et al. Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety,dewaterability,and microbial community dynamics[J]. Waste Manag,2018,71:532-541.
    [79]
    PIAO Z H,LEE J,KIM J Y. Effect of substrate feeding frequencies on the methane production and microbial communities of laboratory-scale anaerobic digestion reactors[J]. Journal of Material Cycles and Waste Management,2018,20(1):147-154.
    [80]
    KARIM K,HOFFMANN R,KLASSON T,et al. Anaerobic digestion of animal waste:Waste strength versus impact of mixing[J]. Bioresource Technology,2005,96(16):1771-1781.
    [81]
    WANG M,LI R,ZHAO Q. Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline,thermal hydrolysis and ultrasonic pretreatments[J]. Frontiers of Environmental Science& Engineering,2019,13(3).
    [82]
    SONG X C,LI X J,ZUO X Y,et al. Study on hydrothermal pretreatment to improve anaerobic methane production performance of cow dung[J]. China Biogas,2019,37(4):23-29. 宋晓聪,李秀金,左晓宇 等. 水热预处理对提高牛粪厌氧产甲烷性能的研究[J]. 中国沼气,2019,37(4):23-29.
    [83]
    QIAN LI H L G W. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system,looking in particular at stability and efficiency[J]. Bioresource Technology,2017,237:231-239.
    [84]
    CHANG H,DU B,HE K,et al. Mechanistic understanding of acclimation and energy metabolism of acetoclastic methanogens under different substrate-to-microorganism ratios[J]. Environ Res,2024,252(Pt 3):118911.
    [85]
    KINE SVENSSON L P J C. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste[J]. Bioresource Technology,2018(269):276-284.
    [86]
    BONK F,POPP D,WEINRICH S,et al. Intermittent fasting for microbes:how discontinuous feeding increases functional stability in anaerobic digestion[J]. Biotechnology for Biofuels,2018,11(1).
    [87]
    KINE SVENSSON L P J C. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste[J]. Bioresource Technology,2018,269:276-284.
    [88]
    SHIN S G,HAN G,LIM J,et al. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater[J]. Water Research,2010,44(17):4838-4849.
    [89]
    HENRIK BANGSØ NIELSEN Z M B K. Bioaugmentation of a two-stage thermophilic(68-C/55-C)anaerobic digestion concept for improvement of the methane yield from cattle manure[J]. Biotechnology and Bioengineering,2007,97(6):1638-1643.
    [90]
    COSTA J C,BARBOSA S G,ALVES M M,et al. Thermochemical pre-and biological co-treatments to improve hydrolysis and methane production from poultry litter[J]. Bioresource Technology,2012,111:141-147.
    [91]
    WANG S. Construction of Hydrogen-and Acetate-producing Dominant Bacterial Flora and Its Enhancement Effect on Anaerobic Digestion System[D]. Harbin:Harbin Institute of Technology,2009. 王硕. 产氢产乙酸优势菌群构建及其对厌氧消化系统的强化效应[D]. 哈尔滨:哈尔滨工业大学,2009.
    [92]
    JIANG J,LI L,LI Y,et al. Bioaugmentation to enhance anaerobic digestion of food waste:Dosage,frequency and economic analysis[J]. Bioresource Technology,2020,307:123256.
    [93]
    COSTA J C,BARBOSA S G,SOUSA D Z. Effects of pre-treatment and bioaugmentation strategies on the anaerobic digestion of chicken feathers[J]. Bioresource Technology,2012,120:114-119.
    [94]
    BAGI Z,ÁCS N,BÁLINT B,et al. Biotechnological intensification of biogas production[J]. Applied Microbiology and Biotechnology,2007,76(2):473-482.
    [95]
    KOVÁCS K L,ÁCS N,KOVÁCS E,et al. Improvement of biogas production by bioaugmentation[J]. BioMed Research International,2013:1-7.
    [96]
    WANG F,LIU X F,LIU X F,et al. Biotechnological intensification of biogas fermentation by hydrogen producing bacteria[J]. Chinese Journal of Applied and Environmental Biology,2013,19(2):351-355. 王芳,刘晓飞,刘晓风,等. 产氢菌对沼气发酵的生物强化作用[J]. 应用与环境生物学报,2013,19(2):351-355.
    [97]
    MATTIASSON S J B. Acclimatization of methanogenic consortia for low pH biomethanation process[J]. Biotechnology Letters,1998,20(8):771-775.
    [98]
    WANG T,ZHANG D,DAI L,et al. Magnetite triggering enhanced direct interspecies electron transfer:a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science& Technology,2018,52(12):7160-7169.
    [99]
    ZHANG H,MA W,XIE B,et al.(Na1/2Bi1/2)TiO3 ‐based lead‐free co‐fired multilayer actuators with large strain and high fatigue resistance[J]. Journal of the American Ceramic Society,2019,102(10):6147-6155.
    [100]
    HATTORI S,LUO H,SHOUN H,et al. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens[J]. Journal of Bioscience and Bioengineering,2001,91(3):294-298.
    [101]
    SUMMERS Z M,FOGARTY H E,LEANG C,et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science,2010,330(6009):1413-1415.
    [102]
    REGUERA G,MCCARTHY K D,MEHTA T,et al. Extracellular electron transfer via microbial nanowires[J]. Nature,2005,435(7045):1098-1101.
    [103]
    ROTARU A,SHRESTHA P M,LIU F,et al. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy Environ. Sci.,2014,7(1):408-415.
    [104]
    LI H,CHANG J,LIU P,et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental Microbiology,2015,17(5):1533-1547.
    [105]
    ROTARU A,SHRESTHA P M,LIU F,et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology,2014,80(15):4599-4605.
    [106]
    MA J L. Preliminary Study on the Process of Magnetite Promoting Anaerobic Degradation of Organic Matter and Its Microbial Mechanism[D]. Beijing:Environmental Engineering,University of Chinese Academy of Sciences,2016. 马金莲. 磁铁矿促进有机质厌氧降解过程及微生物机制初探[D]. 北京:中国科学院大学,2016.
    [107]
    YIN Q. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon[J]. International Biodeterioration& Biodegradation,2016:S0472996277.
    [108]
    LI Y,ZHENG S L,ZHANG H X,et al. Potential interspecies direct electron transfer between Clostridium spp. and Methanosarcina barkeri in methanogenic isolates[J]. Microbiology China,2017,44(3):591-600. 李莹,郑世玲,张洪霞,等. 产甲烷分离物中Clostridium spp.与Methanosarcina barkeri潜在的种间直接电子传递[J]. 微生物学通报,2017,44(3):591-600.
    [109]
    ZHAO J,CAO Y L,LUO H P,et al. Study on treatment of high-concentration organic wastewater by immobilized methanosarcina[J]. Renewable Energy Resources,2002(4):10-13. 赵军,曹亚莉,骆海鹏,等. 固定化甲烷八叠球菌处理高浓度有机废水的研究[J]. 可再生能源,2002(4):10-13.
    [110]
    MILAN Z,VILLA P,SANCHEZ E,et al. Effect of natural and modified zeolite addition on anaerobic digestion of piggery waste[J]. Water Sci Technol,2003,48(6):263-269.
    [111]
    YANG Y N,CHEN Y S,YANG M. Research on strengthening straw fermentation to produce methane by biological pretreatment with white-rot fungi[J]. Journal of Agro-Environment Science,2007,26(5):1968-1972. 杨玉楠,陈亚松,杨敏. 利用白腐菌生物预处理强化秸秆发酵产甲烷研究[J]. 农业环境科学学报,2007,26(5):1968-1972.
    [112]
    YUQING LEI D S Y D,HOLMES D E. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer[J]. Water Research,2019,161:570-580.
    [113]
    YAN DANG D E H Z,ZHANG D S L W. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials[J]. Bioresource Technology,2016,220:516-522.
    [114]
    CHEN S,ROTARU A,SHRESTHA P M,et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports,2014,4(1).
    [115]
    WU B,LIN R,KANG X,et al. Graphene addition to digestion of thin stillage can alleviate acidic shock and improve biomethane production[J]. ACS Sustainable Chemistry& Engineering,2020,8(35):13248-13260.
    [116]
    YIN Q,YANG S,WANG Z,et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal,2018,333:216-225.
    [117]
    SONG X,LIU J,JIANG Q,et al. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4[J]. Chemical Engineering Journal(Lausanne,Switzerland:1996),2019,374:1344-1352.
    [118]
    WANG X L,YANG W Q,LI Y B,et al. Research on the preparation and properties of polyethylene/nano-graphite microflake conductive composite materials[J]. China Plastics,2015,29(3):57-62. 王选伦,杨文青,李又兵,等. 聚乙烯/纳米石墨微片导电复合材料的制备与性能研究[J]. 中国塑料,2015,29(3):57-62.
    [119]
    PAN J,MA J,LIU X,et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresour Technol,2019,275:258-265.
    [120]
    LEE J,LEE S,PARK H. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors[J]. Bioresource Technology,2016,205:205-212.
    [121]
    LUO C,LÜ F,SHAO L,et al. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes[J]. Water Research,2015,68:710-718.
    [122]
    ZENG Y,LIU H,CHEN W,et al. Riboflavin-loaded carbon cloth aids the anaerobic digestion of cow dung by promoting direct interspecies electron transfer[J]. Environmental Research,2024,241:117660.
    [123]
    WANG Y Z,WU Y,LIU Y W,et al. Research progress on carbon-based conductive materials promoting methane production from anaerobic digestion of organic solid waste[J]. Environmental Engineering,2023,41(9):146-155. 王彦朝,吴瑒,刘一苇,等. 碳基导电材料促进有机固废厌氧消化产甲烷的研究进展[J]. 环境工程,2023,41(9):146-155.
    [124]
    LU T D. Research on the Enhancement of Anaerobic Digestion of Pig Manure and Reduction of Antibiotic Resistance Genes by Iron-Based Compounds and Their Microbiological Mechanisms[D]. Nanning:Guangxi University,2020. 卢铁东. 铁系化合物强化猪粪厌氧消化和抗性基因削减及其微生物学机制研究[D]. 南宁:广西大学,2020.
    [125]
    CHEN R Y. Effects of Nano-Iron Materials on Anaerobic Digestion Characteristics of Pig Manure and Degradation of Tetracycline Antibiotics[D]. Guiyang:Environmental Science and Engineering,Guizhou University,2022. 陈瑞应. 纳米铁材料对猪粪厌氧消化特性及四环素类抗生素降解的影响[D]. 贵阳:贵州大学,2022.
    [126]
    WANG Z,YUN S,SHI J,et al. Critical evidence for direct interspecies electron transfer with tungsten-based accelerants:An experimental and theoretical investigation[J]. Bioresource Technology,2020,311:123519.
    [127]
    JIANG C J. Experimental Study on the Influence of Mediating Materials on the Gas Production Performance of Chicken Manure Anaerobic Digestion and the Utilization of Biogas Residue[D]. Ya'an:Sichuan Agricultural University,2022. 江春景. 介导材料对鸡粪厌氧消化产气性能影响及沼渣利用试验研究[D]. 雅安:四川农业大学,2022.
    [128]
    PAN J T. Study on the Characteristics and Mechanism of Biochar-mediated Anaerobic Digestion of Chicken Manure[D]. Xi'an:Northwest A&F University,2016. 潘君廷. 生物炭介导的鸡粪厌氧消化特性及机理研究[D]. 西安:西北农林科技大学,2016.
    [129]
    LI J,XU H W,WANG Y C,et al. Influence of carrier on the performance of cattle manure anaerobic treatment at 26 ℃[J]. Journal of Northeast Agricultural University,2009:79-82. 李杰,许洪伟,王永成,等. 载体对26 ℃条件下牛粪厌氧处理性能的影响[J]. 东北农业大学学报,2009:79-82.
    [130]
    GARCIA M L,LAPA K R,FORESTI E,et al. Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage[J]. Journal of Environmental Management,2008,88(4):1471-1477.
    [131]
    CHEN X Y,ZHI Q X,ZHU J L. Influence of alkaline resin on biogas production from straw anaerobic fermentation[J]. Jiangsu Agricultural Sciences,2013,41(1):377-380. 陈晓晔,支秋霞,朱建良. 碱性树脂对秸秆厌氧发酵产沼气的影响[J]. 江苏农业科学,2013,41(1):377-380.
    [132]
    XU J,ZHU W Z,XIE L. Research progress on the influence of bioaugmentation technology on anaerobic digestion characteristics[J]. Chemical Industry and Engineering Progress,2019,38(9):4227-4237. 徐俊,朱雯喆,谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展,2019,38(9):4227-4237.
    [133]
    ZHANG Q,FAN D,PANG X,et al. Effects of polyethylene microplastics on the fate of antibiotic resistance genes and microbial communities in anaerobic digestion of dairy wastes[J]. Journal of Cleaner Production,2021,292:125909.
    [134]
    ZHANG J,ZHAO M,LI C,et al. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion[J]. Ecotoxicology and Environmental Safety,2020,205:111095.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return