Citation: | WANG S,CAI Z N,TAO M C,et al.Research progress and prospects of monitoring of carbon sources and sinks in urban areas[J].Environmental Engineering,2025,43(4):1-16. doi: 10.13205/j.hjgc.202504001 |
[1] |
ZHANG Z,REN Y M,DONG H J. Research on carbon emissions peaking and low-carbon development of cities:a case of Shanghai[J]. Environmental Engineering,2020,38(11):12-18. 张哲,任怡萌,董会娟. 城市碳排放达峰和低碳发展研究:以上海市为例[J]. 环境工程,2020,38(11):12-18.
|
[2] |
CAO J J,ZENG N,LIU Y,et al. Preface to the special issue on carbon neutrality:important roles of renewable energies,carbon sinks,NETs,and non-CO2 GHGs[J]. Advances in Atmospheric Sciences,2022,39(8):1207-1208.
|
[3] |
ZENG N,HAUSMANN H. Wood vault:remove atmospheric CO2 with trees,store wood for carbon sequestration for now and as biomass,bioenergy and carbon reserve for the future[J]. Carbon Balance Manag,2022,17(1):2.
|
[4] |
XING Y Y. Dynamics of carbon sink pattern and urban carbon sink in Xi'an under urban spatial growth[D]. Xi'an:Shaanxi Normal University,2012. 邢燕燕. 城市空间增长下的西安市碳汇格局动态与城市碳增汇研究[D]. 西安:陕西师范大学,2012.
|
[5] |
FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al. Global carbon budget 2022[J]. Earth System Science Data Discussions,2022:1-159.
|
[6] |
XIONG T,LIU Y,YANG C,et al. Research overview of urban carbon emission measurement and future prospect for GHG monitoring network[J]. Energy Reports,2023,9:231-242.
|
[7] |
LIU P,ZHA T,ZHANG F,et al. Environmental controls on carbon fluxes in an urban forest in the Megalopolis of Beijing,2012-2020[J]. Agricultural and Forest Meteorology,2023,333:109412.
|
[8] |
United Nations Department of Economic and Social Affairs. World urbanization prospects:the 2018 revision[M]. United Nations,2019. DOI: 10.18356/b9e995fe-en.
|
[9] |
WANG S J,SHI C Y,FANG C L,et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model[J]. Applied Energy,2019,235:95-105.
|
[10] |
ZANG H K,YANG W S,ZHANG J,et al. Research on carbon dioxide emissions peaking in Beijing-Tianjin-Hebei city agglomeration[J]. Environmental Engineering,2020,38(11):19-24,77. 臧宏宽,杨威杉,张静,等. 京津冀城市群二氧化碳排放达峰研究[J]. 环境工程,2020,38(11):19-24,77.
|
[11] |
XU B X. Inversion of surface CO2 flux assimilation based on GEOS-Chem model[D]. Xuzhou:China University of Mining and Technology,2016. 徐博轩. 基于GEOS-Chem模型的陆表CO2通量同化反演研究[D]. 徐州:中国矿业大学,2016.
|
[12] |
FANG J Y,GUO Z D. Search for lost terrestrial carbon sinks[J]. Nature Journal,2007(1):1-6. 方精云,郭兆迪. 寻找失去的陆地碳汇[J]. 自然杂志,2007(1):1-6.
|
[13] |
HUTYRA L R,DUREN R,GURNEY K R,et al. Urbanization and the carbon cycle:current capabilities and research outlook from the natural sciences perspective[J]. Earth's Future,2014,2(10):473-495.
|
[14] |
WANG H Y. Research on urban carbon source/sink based on vorticity observation and remote sensing technology[D]. Xuzhou:China University of Mining and Technology,2016. 王宏莹. 基于涡度观测和遥感技术的城市碳源/汇研究[D]. 徐州:中国矿业大学,2016.
|
[15] |
CHEN B,ZHANG X X,WANG H,et al. Ideas on the establishment of urban carbon flux monitoring system[J]. Contemporary Chemical Industry Research,2022(6):51-53. 陈波,张晓旭,王好,等. 关于城市碳通量监测体系建立的思路[J]. 当代化工研究,2022(6):51-53.
|
[16] |
VESALA T,JÄRVI L,LAUNIAINEN S,et al. Surface-atmosphere interactions over complex urban terrain in Helsinki,Finland[J]. Tellus B:Chemical and Physical Meteorology,2008,60(2):188-199.
|
[17] |
Shan C G. Spatial-temporal distribution and variation characteristics of atmospheric CO2 based on ground-based high-resolution Fourier transform infrared spectroscopy[D]. Hefei:University of Science and Technology of China,2019. 单昌功. 基于地基高分辨率傅里叶变换红外光谱技术研究大气CO2时空分布和变化特征[D]. 合肥:中国科学技术大学,2019.
|
[18] |
GURNEY K R,LAW R M,DENNING A S,et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature,2002,415(6872):626-630.
|
[19] |
WUNCH D,TOON G C,BLAVIER J F,et al. The total carbon column observing network[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2011,369(1943):2087-2112.
|
[20] |
LIU Y,LV D R,CHEN H B,et al. A review of the progress in techniques and methods of satellite remote sensing of atmospheric CO2[J]. Remote Sensing Technology and Application,2011,26(2):247-254. 刘毅,吕达仁,陈洪滨,等. 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用,2011,26(2):247-254.
|
[21] |
CHEN X,LIU Y,CAI Z N. A review of shortwave infrared CO2 retrieval radiative transfer models[J]. Remote Sensing Technology and Application,2015,30(5):825-834. 陈曦,刘毅,蔡兆男. 短波红外CO2反演辐射传输模式综述[J]. 遥感技术与应用,2015,30(5):825-834.
|
[22] |
KUAI L,WORDEN J,KULAWIK S,et al. Profiling tropospheric CO2 using Aura TES and TCCON instruments[J]. Atmospheric Measurement Techniques,2013,6(1):63-79.
|
[23] |
ZHANG X W,WU J S,PENG J,et al. The uncertainty of nighttime light data in estimating carbon dioxide emissions in China:a comparison between DMSP-OLS and NPP-VIIRS[J]. Remote Sensing,2017,9(8):20.
|
[24] |
MENG L N,GRAUS W,WORRELL E,et al. Estimating CO2(carbon dioxide)emissions at urban scales by DMSP/OLS(Defense Meteorological Satellite Program's Operational Linescan System)nighttime light imagery:nethodological challenges and a case study for China[J]. Energy,2014,71:468-478.
|
[25] |
CAO X,HU Y,ZHU X L,et al. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images[J]. Remote Sensing of Environment,2019,224:401-411.
|
[26] |
XIONG X,BUTLER J,CAO C,et al. Optical Sensors—VIS/NIR/SWIR[M]. Science Direcrt,2017.
|
[27] |
ELVIDGE C D,BAUGH K,ZHIZHIN M,et al. VIIRS night-time lights[J]. International Journal of Remote Sensing,2017,38(21):5860-5879.
|
[28] |
RUNNING S W,BALDOCCHI D D,TURNER D P,et al. A global terrestrial monitoring network integrating tower fluxes,flask sampling,ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment,1999,70:108-127.
|
[29] |
ÁLVAREZ-SALGADO X A,MILLER AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation:conditions for precise shipboard measurements[J]. Marine Chemistry,1998,62:325-333.
|
[30] |
MILES N L,MARTINS D K,RICHARDSON S J,et al. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4,CO2,and delta(CH4)-C-13 deployed on towers in the Marcellus Shale region[J]. Atmospheric Measurement Techniques,2018,11(3):1273-1295.
|
[31] |
ZHANG G L,XING L QI,ZHANG L,et al. Research progress of carbon sink measurement and monitoring methods for urban green space[J]. Journal of Landscape Architecture,2022,39(1):4-9,49. 张桂莲,邢璐琪,张浪,等. 城市绿地碳汇计量监测方法研究进展[J]. 园林,2022,39(1):4-9,49.
|
[32] |
LIU X M,CHENG X L,HU F. Gradient characteristics of CO2 concentration and flux in Beijing urban area part I:concentration and virtual temperature[J]. Chinese Journal of Geophysics-Chinese Edition,2015,58(5):1502-1512.
|
[33] |
BUSCHMANN M,DEUTSCHER N M,SHERLOCK V,et al. Retrieval of XCO2 from ground-based mid-infrared(NDACC)solar absorption spectra and comparison to TCCON[J]. Atmos Meas Tech,2016,9(2):577-585.
|
[34] |
CHE K,LIU Y,CAI Z N,et al. Application of portable Fourier transform infrared spectrometer in atmospheric greenhouse gas observation[J]. Remote Sensing Technology and Application,2021,36(1):44-54. 车轲,刘毅,蔡兆男,等. 便携式傅里叶变换红外光谱仪在大气温室气体观测中的应用进展[J]. 遥感技术与应用,2021,36(1):44-54.
|
[35] |
LIU Y,WANG J,CHE K,et al. Satellite remote sensing of greenhouse gases:progress and trend[J]. Journal of Remote Sensing,2021,25(1):53-64. 刘毅,王婧,车轲,等. 温室气体的卫星遥感:进展与趋势[J]. 遥感学报,2021,25(1):53-64.
|
[36] |
YANG D X,HAKKARAINEN J,LIU Y,et al. Detection of anthropogenic CO2 emission signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor(S5P)NO2 measurements:first results[J]. Advances in Atmospheric Sciences,2023,40(1):1-5.
|
[37] |
LIU Y,WANG J,YAO L,et al. The TanSat mission:preliminary global observations[J]. Sci Bull(Beijing),2018,63(18):1200-1207.
|
[38] |
China successfully launched Fengyun-3D weather satellite[J]. Science and Technology Review,2017,35(22):6. 中国成功发射“风云三号D”气象卫星[J]. 科技导报,2017,35(22):6.
|
[39] |
LIU W Q." Development of Gaofen-5 satellite Payload" album[J]. Journal of Atmospheric and Environmental Optics,2019,14(1):1. 刘文清.“高分五号卫星载荷研制”专辑[J]. 大气与环境光学学报,2019,14(1):1.
|
[40] |
China successfully launched atmospheric environment monitoring satellite[J]. Infrared,2022,43(4):50. 我国成功发射大气环境监测卫星[J]. 红外,2022,43(4):50.
|
[41] |
TONG C M,BAO Y F,HUANG Q L,et al. Research progress of solar induced chlorophyll fluorescence satellite remote sensing technology[J]. Space Return and Remote Sensing,2022,43(2):45-55. 仝迟鸣,鲍云飞,黄巧林,等. 太阳诱导叶绿素荧光卫星遥感技术研究进展[J]. 航天返回与遥感,2022,43(2):45-55.
|
[42] |
FENG H,ZHANG W. China's first terrestrial ecosystem carbon monitoring satellite was launched successfully[J]. Science,Technology and Industry for National Defense,2022(8):40-41. 冯华,张未.“句芒”探碳看点多:我国首颗陆地生态系统碳监测卫星发射成功[J]. 国防科技工业,2022(8):40-41.
|
[43] |
LAUVAUX T,MILES N L,DENG A,et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment(INFLUX)[J]. Journal of Geophysical Research:Atmospheres,2016,121(10):5213-5236.
|
[44] |
BRÉON F M,BROQUET G,PUYGRENIER V,et al. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements[J]. Atmos Chem Phys,2015,15(4):1707-1724.
|
[45] |
VERHULST K R,KARION A,KIM J,et al. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project-Part 1:calibration,urban enhancements,and uncertainty estimates[J]. Atmospheric Chemistry and Physics,2017,17(13):8313-8341.
|
[46] |
VELASCO E,ROTH M. Cities as net sources of CO2:review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique[J]. Geography Compass,2010,4(9):1238-1259.
|
[47] |
WU D,LIU J,WENNBERG P O,et al. Towards sector-based attribution using intra-city variations in satellite-based emission ratios between CO2 and CO[J]. Atmospheric Chemistry and Physics,2022,22(22):14547-14570.
|
[48] |
ZHENG B,GENG G,CIAIS P,et al. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic[J]. Science Advances,2020,6(49):eabd4998.
|
[49] |
STECHEMESSER K,GUENTHER E. Carbon accounting:a systematic literature review[J]. Journal of Cleaner Production,2012,36:17-38.
|
[50] |
HUANG C. Multi-dimensional assessment and scenario simulation of urban carbon emissions[D]. Shanghai:East China Normal University,2020. 黄诚. 城市碳排放的多维度评价与情景模拟[D]. 上海:华东师范大学,2020.
|
[51] |
ODA T,MAKSYUTOV S,ANDRES RJ. The Open-Source Data Inventory for Anthropogenic CO2,Version 2016(ODIAC2016):a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions[J]. Earth System Science Data,2018,10(1):87-107.
|
[52] |
JANSSENS-Maenhout G,CRIPPA M,GUIZZARDI D,et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012[J]. Earth System Science Data,2019,11(3):959-1002.
|
[53] |
HAN P F,ZENG N,ODA T,et al. Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories[J]. Atmospheric Chemistry and Physics,2020,20(19):11371-11385.
|
[54] |
WANG R,TAO S,CIAIS P,et al. High-resolution mapping of combustion processes and implications for CO2 emissions[J]. Atmospheric Chemistry and Physics,2013,13(10):5189-5203.
|
[55] |
ASEFI-Najafabady S,RAYNER P J,GURNEY K R,et al. A multiyear,global gridded fossil fuel CO2 emission data product:Evaluation and analysis of results[J]. Journal of Geophysical Research-Atmospheres,2014,119(17):19.
|
[56] |
CAI B F,LIANG S,ZHOU J,et al. China high resolution emission database(CHRED)with point emission sources,gridded emission data,and supplementary socioeconomic data[J]. Resources Conservation and Recycling,2018,129:232-239.
|
[57] |
WANG J N,CAI B F,ZHANG L X,et al. High resolution carbon dioxide emission gridded data for China derived from point sources[J]. Environmental Science& Technology,2014,48(12):7085-7093.
|
[58] |
ZHENG B,TONG D,LI M,et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics,2018,18(19):14095-14111.
|
[59] |
LIU Z,GUAN D B,WEI W,et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature,2015,524(7565):335.
|
[60] |
LIU M,WANG H,WANG H,et al. Refined estimate of China's CO2 emissions in spatiotemporal distributions[J]. Atmospheric Chemistry and Physics,2013,13(21):10873-10882.
|
[61] |
WU D. Top-down constraints on CO emissions from wildfire inventories using a receptor-oriented Lagrangian particle dispersion model[D]. Salt Lake City:The University of Utah,2016.
|
[62] |
GATELY C K,HUTYRA L R. Large uncertainties in urban-scale carbon emissions[J]. Journal of Geophysical Research:Atmospheres,2017,122(20):11,242-211,260.
|
[63] |
HAN P F,ZENG N,ODA T,et al. A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories[J]. Carbon Balance and Management,2020,15(1):16.
|
[64] |
CHE K,CAI Z N,LIU Y,et al. Lagrangian inversion of anthropogenic CO2 emissions from Beijing using differential column measurements[J]. Environmental Research Letters,2022,17(7):10.
|
[65] |
HUO D,HUANG X,DOU X,et al. Carbon monitor cities near-real-time daily estimates of CO2 emissions from 1500 cities worldwide[J]. Scientific Data,2022,9(1):533.
|
[66] |
SU Y,CHEN X,YE Y,et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geogr Sin,2013,68:1513-1526.
|
[67] |
WANG J S,WANG C X,REN W X,et al. Research on"double carbon" from the perspective of geography:themes,achievements and prospects[J]. Advances in Earth Sciences:1-12. 王建事,王成新,任婉侠,等. 地理学视角下“双碳”研究:主题、成效及展望[J]. 地球科学进展:1-12.
|
[68] |
LIU K,ZHANG H,KONG L H,et al. Research progress of carbon sink assessment methods in terrestrial ecosystems[J]. Acta Ecologica Sinica,2023,43(10):4294-4307. 刘坤,张慧,孔令辉,等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报,2023,43(10):4294-4307.
|
[69] |
ZHANG L,SONG Y H,ZHANG H L,et al. Comparison of urban forest carbon sink and estimation methods[J]. Modern Horticulture,2023,46(11):73-78. 张岚,宋钰红,张慧琳,等. 城市森林碳汇及估算方法比较[J]. 现代园艺,2023,46(11):73-78.
|
[70] |
YU G R,ZHANG L M,SUN X M. Progress and prospects of the Chinese Terrestrial Ecosystem Flux Observation and Research Network(ChinaFLUX)[J]. Progress in Geography,2014,33(7):903-917. 于贵瑞,张雷明,孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展,2014,33(7):903-917.
|
[71] |
CAO X P,LIN Y Y,DU P Y,et al. Research on urban vegetation carbon sink based on hyperspectral remote sensing data[J]. Science and Technology Innovation,2016(16):11-13. 曹晓裴,林殷怡,杜鹏宇,等. 高光谱遥感数据下城市植被碳汇的研究[J]. 科技与创新,2016(16):11-13.
|
[72] |
JI C,ZHANG J,YAO F. The yield estimation of rapeseed in Hubei province by BEPS process-based model and MODIS satellite data[C]// Springer,2015:643-652.
|
[73] |
XU F,WANG X,LI L. NPP and vegetation carbon sink capacity estimation of urban green space using the optimized CASA model:a case study of five Chinese Cities[J]. Atmosphere,2023,14(7):1161.
|
[74] |
YUAN W,LIU S,ZHOU G,et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology,2007,143(3/4):189-207.
|
[75] |
ZHANG J P,LIU C L,HAO H G,et al. Spatial and temporal changes of carbon storage and carbon sink in grassland ecosystem in the Source region of Three Rivers based on MODIS GPP/NPP data[J]. Journal of Ecology and Environment,2015,24(1):8. 张继平,刘春兰,郝海广,等. 基于 MODIS GPP/NPP 数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报,2015,24(1):8.
|
[76] |
YIN W D,SU J Y,XU Z Y,et al. Application of remote sensing technology to urban green space carbon storage estimation[J]. Journal of Landscape Architecture,2022,29(5):24-30. 殷炜达,苏俊伊,许卓亚,等. 基于遥感技术的城市绿地碳储量估算应用[J]. 风景园林,2022,29(5):24-30.
|
[77] |
WU D,LIN J C,DUARTE H F,et al. A model for urban biogenic CO2 fluxes:Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes(SMUrF v1)[J]. Geoscientific Model Development,2021,14(6):3633-3661.
|
[78] |
YANG X Y,WANG Z T,PAN G G,et al. Advances in atmospheric observation of greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics,2022,17(6):581-597. 杨晓钰,王中挺,潘光 等. 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报,2022,17(6):581-597.
|
[79] |
HU C. Simulation of atmospheric CO2 concentration based on WRF-STILT model[D]. Nanjing:Nanjing University of Information Science and Technology,2017. 胡诚. 基于WRF-STILT模型的大气CO2浓度模拟[D]. 南京:南京信息工程大学,2017.
|
[80] |
HU H M,WANG C,ZHANG J T. International progress in inversion of urban regional carbon emission measurement[J]. Acta Metrologica Sinica,2017,38(1):7-12. 胡鹤鸣,王池,张金涛. 城市区域碳排放测量反演研究国际进展[J]. 计量学报,2017,38(1):7-12.
|
[81] |
FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al. Global carbon budget 2020[J]. Earth System Science Data,2020,12(4):3269-3340.
|
[82] |
JIANG F,WANG H,CHEN J M,et al. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System[J]. Atmospheric Chemistry and Physics,2021,21(3):1963-1985.
|
[83] |
HE W,VAN DER VELDE I R,ANDREWS A E,et al. CTDAS-Lagrange v1. 0:a high-resolution data assimilation system for regional carbon dioxide observations[J]. Geoscientific Model Development,2018,11(8):3515-3536.
|
[84] |
STAUFER J,BROQUET G,BREON F M,et al. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion[J]. Atmospheric Chemistry and Physics,2016,16(22):14703-14726.
|
[85] |
GURNEY K R,LIANG J,ROEST G,et al. Under-reporting of greenhouse gas emissions in U.S. cities[J]. Nature Communications,2021,12(1):553.
|
[86] |
Dang X C. Simulation of carbon dioxide source,sink and spatiotemporal distribution in East Asia[D]. Nanjing:Nanjing University of Information Science and Technology,2012. 党小晨. 东亚地区二氧化碳源、汇及时空分布模拟[D]. 南京:南京信息工程大学,2012.
|
[87] |
WANG H,JIANG F,LIU Y,et al. Global terrestrial ecosystem carbon flux inferred from TanSat XCO2 Retrievals[J]. Journal of Remote Sensing,2022,2022.
|
[88] |
CHE K,LIU Y,CAI Z N,et al. Characterization of regional combustion efficiency using Delta XCO:delta XCO2 observed by a portable fourier-transform spectrometer at an urban site in Beijing[J]. Advances in Atmospheric Sciences,2022,39(8):1299-1315.
|
[89] |
ZHENG Q M,SETO K C,ZHOU Y Y,et al. Nighttime light remote sensing for urban applications:progress,challenges,and prospects[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,202:125-141.
|
[90] |
ZUO C,GONG W,GAO ZY,et al. Correlation analysis of CO2 concentration based on DMSP-OLS and NPP-VIIRS Integrated Data[J]. Remote Sensing,2022,14(17):18.
|
[91] |
RAUPACH M R,RAYNER P J,PAGET M. Regional variations in spatial structure of nightlights,population density and fossil-fuel CO2 emissions[J]. Energy Policy,2010,38(9):4756-4764.
|
[92] |
LIU L Y,CHEN L F,LIU Y,et al. Methods,progress and challenges of satellite remote sensing monitoring for global carbon inventory[J]. Journal of Remote Sensing,2022,26(2):243-267. 刘良云,陈良富,刘毅,等. 全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报,2022,26(2):243-267.
|
[93] |
ELVIDGE C D,IMHOFF M L,BAUGH K E,et al. Night-time lights of the world:1994-1995[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2001,56(2):81-99.
|
[94] |
SU Y X,CHEN X Z,YE Y Y,et al. Characteristics and mechanisms of carbon emissions from energy consumption in China based on night light data[J]. Acta Geographica Sinica,2013,68(11):1513-1526. 苏泳娴,陈修治,叶玉瑶,等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526.
|
[95] |
WANG S J,LIU X P. China's city-level energy-related CO2 emissions:spatiotemporal patterns and driving forces[J]. Applied Energy,2017,200:204-214.
|
[96] |
WU J S,NIU Y,PENG J,et al. Energy consumption dynamics of prefecture-level cities in China from 1995 to 2009 based on DMSP/OLS night light data[J]. Geographical Research,2014,33(4):625-634. 吴健生,牛妍,彭建,等. 基于DMSP/OLS夜间灯光数据的1995-2009年中国地级市能源消费动态[J]. 地理研究,2014,33(4):625-634.
|
[97] |
XIA S Y,SHAO H Y,WANG H,et al. Spatio-temporal dynamics and driving forces of multi-scale CO2 emissions by integrating DMSP-OLS and NPP-VIIRS data:a case study in Beijing-Tianjin-Hebei,China[J]. Remote Sensing,2022,14(19).
|
[98] |
LI J J,SHI J A,DUAN K F,et al. Efficiency of China's urban development under carbon emission constraints:a city-level analysis[J]. Physics and Chemistry of the Earth,2022,127:14.
|
[99] |
MA J J,GUO J Y,AHMAD S,et al. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light[J]. Remote Sensing,2020,12(6):15.
|
[100] |
LABZOVSKII L D,JEONG S J,PARAZOO NC. Working towards confident spaceborne monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2[J]. Remote Sensing of Environment,2019,233:12.
|
[101] |
LEI R,FENG S,DANJOU A,et al. Fossil fuel CO2 emissions over metropolitan areas from space:a multi-model analysis of OCO-2 data over Lahore,Pakistan[J]. Remote Sensing of Environment,2021,264:112625.
|
[102] |
YANG D,BOESCH H,LIU Y,et al. Toward high precision XCO2 retrievals from TanSat observations:retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research-Atmospheres,2020,125(22):26.
|
[103] |
KIEL M,ELDERING A,ROTEN D D,et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3:a first look at the Los Angeles megacity[J]. Remote Sensing of Environment,2021,258:112314.
|
[104] |
REUTER M,BUCHWITZ M,SCHNEISING O,et al. Towards monitoring localized CO2 emissions from space:co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites[J]. Atmospheric Chemistry and Physics,2019,19(14):9371-9383.
|
[105] |
PARK C,JEONG S,PARK H,et al. Evaluation of the potential use of satellite-derived XCO2 in detecting CO2 enhancement in megacities with limited ground observations:a case study in Seoul using orbiting carbon observatory-2[J]. Asia-Pacific Journal of Atmospheric Sciences,2021,57(2):289-299.
|
[106] |
SILVA S J,ARELLANO AF. Characterizing regional-scale combustion using satellite retrievals of CO,NO2 and CO2[J]. Remote Sensing,2017,9(7):15.
|
[107] |
FINCH D P,PALMER P I,ZHANG T R. Automated detection of atmospheric NO2 plumes from satellite data:a tool to help infer anthropogenic combustion emissions[J]. Atmospheric Measurement Techniques,2022,15(3):721-733.
|
[108] |
STEENBERG JWN,RISTOW M,DUINKER P N,et al. A national assessment of urban forest carbon storage and sequestration in Canada[J]. Carbon Balance and Management,2023,18(1).
|
[109] |
MUSLIH A M,NISA A,ARLITA T. The role of urban forests as carbon sink:a case study in the urban forest of Banda Aceh,Indonesia[J]. Jurnal Sylva Lestari,2022,10(3):417-425.
|
[110] |
NOWAK D J. Atmospheric carbon reduction by urban trees[J]. Journal of Environmental Management,1993,37(3):207-217.
|
[111] |
JO H K,MCPHERSON G E. Carbon storage and flux in urban residential greenspace[J]. Journal of Environmental Management,1995,45(2):109-133.
|
[112] |
HONG S O,KIM J,BYUN Y H,et al. Intra-urban variations of the CO2 fluxes at the surface-atmosphere interface in the Seoul Metropolitan Area[J]. Asia-Pacific Journal of Atmospheric Sciences,2023:1-15.
|
[113] |
MCPHERSON E G,SIMPSON J R. Potential energy savings in buildings by an urban tree planting programme in California[J]. Urban Forestry& Urban Greening,2003,2(2):73-86.
|
[114] |
VACCARI F P,GIOLI B,TOSCANO P,et al. Carbon dioxide balance assessment of the city of Florence(Italy),and implications for urban planning[J]. Landscape and Urban Planning,2013,120:138-146.
|
[115] |
JO H K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea[J]. Journal of Environmental Management,2002,64(2):115-126.
|
[116] |
NOWAK D J,CRANE D E,STEVENS J C,et al. A ground-based method of assessing urban forest structure and ecosystem services[J]. Arboriculture and Urban Forestry,2008,34(6):347-358.
|
[117] |
NOWAK D J,GREENFIELD E J,HOEHN R E,et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution,2013,178:229-236.
|
[118] |
PASHER J,MCGOVERN M,KHOURY M,et al. Assessing carbon storage and sequestration by Canada's urban forests using high resolution earth observation data[J]. Urban Forestry& Urban Greening,2014,13(3):484-494.
|
[119] |
HE X T. Research on estimation method of urban green space carbon sink for overall planning stage[D]. Xi'an:Xi'an University of Architecture and Technology,2021. 和晓彤. 面向总体规划阶段的城市绿地碳汇量估算方法研究[D]. 西安:西安建筑科技大学,2021.
|
[120] |
WU D. Quantifying CO2 emissions for cities around the globe from space-based measurements[M]. 2020.
|
[121] |
LIU C,LI X. Carbon storage and sequestration by urban forests in Shenyang,China[J]. Urban Forestry& Urban Greening,2012,11(2):121-128.
|
[122] |
ZHANG Y,MENG W,YUN H,et al. Is urban green space a carbon sink or source?—a case study of China based on LCA method[J]. Environmental Impact Assessment Review,2022,94:106766.
|
[123] |
GAO Q,WAN Y,LI Y,et al. Effects of topography and human activity on the net primary productivity(NPP)of alpine grassland in northern Tibet from 1981 to 2004[J]. International Journal of Remote Sensing,2013,34(6):2057-2069.
|
[124] |
YANG H,CHEN W. Spatio-temporal pattern of urban vegetation carbon sink and driving mechanisms of human activities in Huaibei,China[J]. Environmental Science and Pollution Research,2022:1-15.
|
[125] |
ELDERING A,TAYLOR T E,O'DELL C W,et al. The OCO-3 mission:measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques,2019,12(4):2341-2370.
|
[126] |
YANG E G,KORT E A,WU D,et al. Using space-based observations and Lagrangian modeling to evaluate urban carbon dioxide emissions in the Middle East[J]. Journal of Geophysical Research-Atmospheres,2020,125(7):20.
|
[127] |
WU K,PALMER P I,WU D,et al. Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions[J]. Atmospheric Measurement Techniques,2023,16(2):581-602.
|