Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
YIN J,MENG Y N,JIANG H T.Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin[J].Environmental Engineering,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004
Citation: YIN J,MENG Y N,JIANG H T.Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin[J].Environmental Engineering,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004

Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin

doi: 10.13205/j.hjgc.202504004
  • Received Date: 2024-04-03
  • Accepted Date: 2024-09-03
  • Rev Recd Date: 2024-08-16
  • Publish Date: 2025-04-01
  • Industry is an important engine of the national economy and a major source of carbon emissions. Research on industrial carbon emissions is crucial to achieving the "dual carbon" goal and regional sustainable development. The Pearl River Basin is a key area for economic and ecological environmental protection in China. However, there is no research on industrial carbon emissions in the Pearl River Basin. The industrial carbon emission efficiencies of 47 cities in the Pearl River Basin from 2009 to 2020 were evaluated using the super-efficiency SBM model. The spatial distribution characteristics and changes in local spatial relations of these cities' industrial carbon emission efficiencies were explored employing Moran's Index and LISA temporal transition methods. A geographical detector was used to identify the main influencing factors and their interactions, and a multi-scale geographically weighted regression model was applied to analyze the spatial heterogeneity of the influencing factors. The study found an overall rising trend in industrial carbon emission efficiency in the Pearl River Basin, with an average annual growth rate of 5.16%. Spatial distribution indicates that high-efficiency cities are concentrated in areas like Fangchenggang and Yuxi, while low-efficiency cities are primarily heavy industrial cities. The main factors affecting industrial carbon emission efficiency include productivity level,openness degree, and industrialization level. The influence of productivity level on industrial carbon emission efficiency diminished gradually in the eastern part of the basin, the degree of openness exhibits a negative impact on industrial carbon emission efficiency in most cities, and the impact of industrialization level varies, with higher values in developed regions and lower values in less-developed regions.
  • loading
  • [1]
    CHEN C,LI W,ZHAI M Y,et al. Impact of inter-regional trade on shanghai’ s energy-related carbon emissions[J]. Environmental Engineering,2023,41(10):245-252,259. 陈晨,李薇,翟梦瑜,等. 区域间贸易对上海市能源碳排放影响[J]. 环境工程,2023,41(10):245-252,259.
    [2]
    BIAN Y,LIN X Q,ZHOU X,et al. Temporal and spatial evolution characteristics and influencing factors of industrial carbon emissions in Beijing-Tianjin-Hebei region[J]. Environmental Science& Technology,2021,44(11):37-47. 边宇,蔺雪芹,周笑,等. 京津冀工业碳排放时空演化特征及影响因素[J]. 环境科学与技术,2021,44(11):37-47.
    [3]
    ZHANG B,WEI D Q,DING YI,et al. Research on cities’ carbon emissions and their spatiotemporal evolution coupled with nighttime light image and land use data in the Pearl River Basin[J]. Advances in Earth Science,2024,39(3):317-328. 张斌,卫丹琪,丁乙,等. 基于夜间灯光和土地利用的珠江流域城市碳排放估算及其时空动态特征研究[J]. 地球科学进展,2024,39(3):317-328.
    [4]
    DING Y,YIN J,JIANG H T,et al. System dynamics prediction of carbon peaking in Pearl River delta[J]. Environmental Engineering,2023,41(7):22-29. 丁乙,尹剑,姜洪涛,等. 珠三角碳达峰系统动力学预测[J]. 环境工程,2023,41(7):22-29.
    [5]
    MI Y,LIN X Q,WANG D,et al. Spatial-temporal evolution characteristics and influencing factors of industrial carbon emission efficiency in eastern coastal areas of China[J]. Journal of Xi'an University of Technology,2022,38(4):476-486. 米莹,蔺雪芹,王岱,等. 中国东部沿海地区工业碳排放效率时空演化特征及影响因素[J]. 西安理工大学学报,2022,38(4):476-486.
    [6]
    CHENG D Y,ZENG G. Impact on spatial effect of green technology innovation on industrial carbon dioxide emissions in Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin,2023,32(6):1152-1164. 程丹亚,曾刚. 长三角区域绿色技术创新对工业二氧化碳排放影响的空间效应研究[J]. 长江流域资源与环境,2023,32(6):1152-1164.
    [7]
    LU S,LI W. Spatial network structure of industrial carbon emission of city clusters in the middle reaches of the Yangtze River and its influencing factors[J]. Environmental Science& Technology,2023,46(8):227-236. 陆杉,李雯. 长江中游城市群工业碳排放空间关联及其影响因素[J]. 环境科学与技术,2023,46(8):227-236.
    [8]
    WANG X L,QU L H. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emissions in the Yellow River Basin[J]. Environmental Science,2024,45(10):5613-5623. 王喜莲,屈丽航. 黄河流域工业碳排放时空演化特征及影响因素[J]. 环境科学,2024,45(10):5613-5623.
    [9]
    YIN JIAN,JIANG H T,JIAO L,et al. Spatio-temporal variation and influencing factors of industrial carbon emission efficiency in Guizhou based on Geodetector and multi-scale geographically weighted regression[J]. Scientia Geographica Sinica,2024,44(7):1217-1227 尹剑,姜洪涛,焦露,等. 基于Geodetector和MGWR的贵州工业碳排放效率时空演化及影响因素分析[J]. 地理科学,2024,44(7):1217-1227.
    [10]
    WANG S J,GAO S,HUANG Y Y,et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica,2020,75(6):1316-1330. 王少剑,高爽,黄永源,等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报,2020,75(6):1316-1330.
    [11]
    TENG X,LIU F,CHIU Y. The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model[J]. Energy,2021,216:119301.
    [12]
    REN H Y,DU R L,XIE G L,et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering,2023,41(10):195-203,244. 任宏洋,杜若岚,谢贵林,等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程,2023,41(10):195-203,244.
    [13]
    WANG Z,CHENG Z H. Spatiotemporal interaction characteristics and transitionmechanism of carbon intensity in China's service industryunder the targets of carbon peak and carbon neutrality[J]. Acta Geographica Sinica,2023,78(1):54-70. 王峥,程占红.“双碳”目标下中国服务业碳强度时空交互特征及跃迁机制[J]. 地理学报,2023,78(1):54-70.
    [14]
    LIU J,GE X,ZHAO Z Y. Research on spatio-temporal evolution of carbon arrangement in North China cities and its influencing factors[J]. Environmental Engineering,2023,41(10):204-212,222. 刘杰,葛潇,赵振宇. 华北城市群碳排时空演变格局及影响因素研究[J]. 环境工程,2023,41(10):204-212,222.
    [15]
    PAN S Y,ZHANG M L. Prediction of carbon dioxide emission in gansu province based on BP neural network and its influencing factors[J]. Environmental Engineering,2023,41(7):61-68,85. 潘思羽,张美玲. 基于BP神经网络的甘肃省二氧化碳排放预测及影响因素研究[J]. 环境工程,2023,41(7):61-68,85.
    [16]
    ZHANG M,LI L,CHENG Z. Research on carbon emission efficiency in the Chinese construction industry based on a three-stage DEA-Tobit model[J]. Environmental Science and Pollution Research,2021,28(37):51120-51136.
    [17]
    REY S,JANIKAS M. STARS:Space-time analysis of regional systems[J]. Geographical Analysis,2006,38(1):67-86.
    [18]
    YE X,REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science,2013,50(1):315-339.
    [19]
    REY S. Space-Time patterns of rank concordance:local indicators of mobility association with application to spatial income inequality dynamics[J]. Annals of the American Association of Geographers,2016,106(4):788-803.
    [20]
    WANG J F,XU C D. Geodetector:principles and prospects[J]. Acta Geographica Sinica,2017,72(1):116-134. 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.
    [21]
    SHEN T Y,YU H C,ZHOU L,et al. On hedonic price of second-hand houses in beijing based on multi-scalegeographically weighted regression:scale law of spatial heterogeneity[J]. Economic Geography,2020,40(3):75-83. 沈体雁,于瀚辰,周麟,等. 北京市二手住宅价格影响机制:基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理,2020,40(3):75-83.
    [22]
    LIN X Q,ZHANG Y Y,TANG X Y. Comparative research on industrial carbon emission efficiency with single factorand full one:taking Yunnan Province as an example[J]. Ecological Economy,2019,35(8):20-27. 林秀群,张杨杨,唐向阳. 工业行业单要素和全要素碳排放效率的比较研究——以云南省为例[J]. 生态经济,2019,35(8):20-27.
    [23]
    XI Y Q,JI X. An empirical study on carbon emission efficiency of industrial industry in China:considering the super efficiency model of unexpected output sbm and the application of DEA window method[J]. Science and Technology Management Research,2019,39(17):53-62. 郗永勤,吉星. 我国工业行业碳排放效率实证研究:考虑非期望产出SBM超效率模型与DEA视窗方法的应用[J]. 科技管理研究,2019,39(17):53-62.
    [24]
    SUN Y X,CHENG Y,ZHANG H S. Study on the impact of urban industrial land intensive use on carbon emission efficiency:A case study of 15 sub-provincial cities in China[J]. Resources and Environment in the Yangtze Basin,2019,29(8):1703-1712. 孙艺璇,程钰,张含朔. 城市工业土地集约利用对碳排放效率的影响研究:以中国15个副省级城市为例[J]. 长江流域资源与环境,2019,29(8):1703-1712.
    [25]
    ZHOU Z L,CHENG X F. Spatial heterogeneity of PM2.5 influencing factors in Chinese cities based on MGWR model[J]. China Environmental Science,2021,41(6):2552-2561. 周志凌,程先富. 基于MGWR模型的中国城市PM2.5影响因素空间异质性[J]. 中国环境科学,2021,41(6):2552-2561.
    [26]
    CAO J H,ZHOU X Y,ZHANG L. Spatial and temporal evolution and decoupling effect of industrial carbon emissions in less developed cities:a case study of Guangxi[J]. Science and Technology Management Research,2023,43(22):211-220. 曹金华,周小勇,章玲. 欠发达城市工业碳排放的时空演变及脱钩效应:以广西地市为例[J]. 科技管理研究,2023,43(22):211-220.
    [27]
    HUANG Y S,LIU J J. Study on decoupling status and driving factors of industrial carbon emissions in low-carbon pilot cities[J]. Ecological Economy,2024,40(4):13-19,54. 黄元生,刘佳婕. 低碳试点城市工业碳排放脱钩状态及驱动因素研究[J]. 生态经济,2024,40(4):13-19,54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return