| Citation: | XIANG Xiaofeng, SHAO Yaru, GAO Rongze, WANG Zhichao, JIN Zhonghua, WANG Limin, CHE Defu. Research progress of direct air capture technology for CO2[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 178-191. doi: 10.13205/j.hjgc.202505020 |
| [1] |
METZ B,DAVIDSON O,CONINCK H,et al. IPCC special report on carbon dioxide capture and storage[M]. Cambridge:Cambridge University Press,2005.
|
| [2] |
Ministry of Education. The ministry of education issued the"carbon neutral" scientific and technological innovation action plan for higher education[J]. New Energy Science and Technology,2021(9):32-34. 教育部. 教育部发布《高等学校“碳中和”科技创新行动计划》[J]. 新能源科技,2021(9):32-34.
|
| [3] |
LACKNER K,GRIMES P,ZIOCK H. Capturing carbon dioxide from air[J]. Carbon Capture and Storage:CO2 Management Technologies,1999:364-376.
|
| [4] |
KEITH D W,HA-DUONG M,STOLAROFF J K. Climate strategy with CO2 capture from the air[J]. Climatic Change,2005,74(1-3):17-45.
|
| [5] |
SONG Kechen,CUI Xili,XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress,2022,41(3):1152-1162. 宋珂琛,崔希利,邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展,2022,41(3):1152-1162.
|
| [6] |
DUAN X,SONG G,LU G,et al. Chemisorption and regeneration of amine-based CO2 sorbents in direct air capture[J]. Materials Today Sustainability,2023,23:100453.
|
| [7] |
HAN S,YOO M,KIM D,et al. Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent[J]. Energy& Fuels,2011,25(8):3825-3834.
|
| [8] |
ZEMAN F. Energy and material balance of CO2 capture from ambient air[J]. Environmental Science and Ecotechnology,2007,41:7558-7563.
|
| [9] |
MAHMOUDKHANI M,HEIDEL K,FERREIRA J,et al. Low energy packed tower and caustic recovery for direct capture of CO2 from air[J]. Energy Procedia,2009,1(1):1535-1542.
|
| [10] |
SHU Q,LEGRAND L,KUNTKE P,et al. Electrochemical regeneration of spent alkaline absorbent from direct air capture[J]. Environ Sci Technol,2020,54(14):8990-8998.
|
| [11] |
SABATINO F,MEHTA M,GRIMM A,et al. Evaluation of a direct air capture process combining wet scrubbing and bipolar membrane electrodialysis[J]. Industrial& Engineering Chemistry Research,2020,59(15):7007-7020.
|
| [12] |
RINBERG A,BERGMAN A,SCHRAG D,et al. Alkalinity concentration swing for direct air capture of carbon dioxide[J]. ChemSusChem,2021,14(20):4439-4453.
|
| [13] |
ELIMELECH M,PHILLIP W. The future of seawater desalination:energy,technology,and the environment[J]. SCIENCE,2011,333:712-717.
|
| [14] |
LIU X,LU G,YAN Z. Nanocrystalline zirconia as catalyst support in methanol synthesis[J]. Applied Catalysis A:General,2005,279(1/2):241-245.
|
| [15] |
Guo X M. Research on Copper-based catalyst for hydrogenation of methanol from carbon dioxide[D]. Shanghai:East China University of Science and Technology,2011. 郭晓明. 二氧化碳加氢合成甲醇铜基催化剂的研究[D]. 上海:华东理工大学,2011.
|
| [16] |
ALIYU A,AKRAM M,HUGHES K,et al. Investigation into simulating selective exhaust gas recirculation and varying pressurized hot water temperature on the performance of the pilot-scale advanced CO2 capture plant with 40 wt(%)MEA[J]. International Journal of Greenhouse Gas Control,2021,107:103287.
|
| [17] |
HANUSCH J,KERSCHGENS I,HUBER F,et al. Pyrrolizidines for direct air capture and CO2 conversion[J]. Chemical Communications,2019,55(7):949-952.
|
| [18] |
BARZAGLI F,GIORGI C,MANI F,et al. Screening study of different amine-based solutions as sorbents for direct CO2 capture from air[J]. ACS Sustainable Chemistry& Engineering,2020,8(37):14013-14021.
|
| [19] |
LIN Y,MADAN T,ROCHELLE G. Regeneration with rich bypass of aqueous piperazine and monoethanolamine for CO2 capture[J]. Industrial& Engineering Chemistry Research,2014,53(10):4067-7074.
|
| [20] |
ZHANG S,SHEN Y,WANG L,et al. Phase change solvents for post-combustion CO2 capture:principle,advances,and challenges[J]. Applied Energy,2019,239:876-897.
|
| [21] |
CUSTELCEAN R,WILLIAMS N,GARRABRANT K,et al. Direct air capture of CO2 with aqueous amino acids and solid Bis-Iminoguanidines(BIGs)[J]. Chem-archive,2019:23338-23346.
|
| [22] |
CAI H,ZHANG X,LEI L,et al. Direct CO2 capture from air via crystallization with a trichelating iminoguanidine ligand[J]. ACS Omega,2020,5(32):20428-20437.
|
| [23] |
SANCHEZ-FERNANDEZ E,HEFFERNAN K,VAN DER HAM L,et al. Precipitating amino acid solvents for CO2 capture. opportunities to reduce costs in post combustion capture[J]. Energy Procedia,2014,63:727-738.
|
| [24] |
WELTON T. Room-temperature ionic liquids. solvents for synthesis and catalysis[J]. Chemical Society Reviews,1999,99:2071-2083.
|
| [25] |
WILKES J,ZAWOROTKO M. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the Chemical Society,1992:965-967.
|
| [26] |
SONG Z,HU X,ZHOU Y,et al. Rational design of double salt ionic liquids as extraction solvents:separation of thiophene/n-octane as example[J]. American Institute of Chemical Engineers,2019,65(8):e16625.
|
| [27] |
CAPLOW M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society,1968(24):6795-6803.
|
| [28] |
DANCKWERTS P. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science,1979,34:443-446.
|
| [29] |
KUMEŁAN J,KAMPS Á,TUMA D,et al. Solubility of CO2 in the ionic liquid[bmim][PF6][J]. Fluid Phase Equilibria,2005,228/229:207-211.
|
| [30] |
AKI S,MELLEIN B,SAURER E,et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids[J]. Journal Of Physical Chemistry B,2004,108:20355-20365.
|
| [31] |
SHARIATI A,PETERS C. High-pressure phase equilibria of systems with ionic liquids[J]. The Journal of Supercritical Fluids,2005,34(2):171-176.
|
| [32] |
OLIVIER-BOURBIGOU H,MAGNA L. Ionic liquids:perspectives for organic and catalytic reactions[J]. Journal of Molecular Catalysis A:Chemical,2002,182/ 183:419– 437.
|
| [33] |
LUO X,GUO Y,DING F,et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie,2014,126(27):7173-7177.
|
| [34] |
BATES E,MAYTON R,NTAI I,et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society,2002,124:924-726.
|
| [35] |
GURKAN B,FUENTE J,MINDRUP E,et al. Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society,2010,132:2116– 2117.
|
| [36] |
SISTLA Y,KHANNA A. CO2 absorption studies in amino acid-anion based ionic liquids[J]. Chemical Engineering Journal,2015,273:268-276.
|
| [37] |
GURKAN B,GOODRICH B,MINDRUP E,et al. Molecular design of high capacity,low viscosity,chemically tunable ioonic liquids for CO2 capture[J]. The Journal of Physical Chemistry Letters,2010,1(24):3494-3499.
|
| [38] |
LI S,ZHAO C,SUN C,et al. Reaction mechanism and kinetics study of CO2 absorption into[C2OHmim][Lys][J]. Energy& Fuels,2016,30(10):8535-8544.
|
| [39] |
CHEN Y,JIA G,GUOA S,et al. Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer[J]. Green Chemistry,2017,19:5777-5781.
|
| [40] |
MCQUEEN N,GOMES K,MCCORMICK C,et al. A review of direct air capture(DAC):scaling up commercial technologies and innovating for the future[J]. Progress in Energy,2021,3(3):032001.
|
| [41] |
SABATINO F,GRIMM A,GALLUCCI F,et al. A comparative energy and costs assessment and optimization for direct air capture technologies[J]. Joule,2021,5(8):2047-2076.
|
| [42] |
BACIOCCHI R,STORTI G,MAZZOTTI M. Process design and energy requirements for the capture of carbon dioxide from air[J]. Chemical Engineering and Processing:Process Intensification,2006,45(12):1047-1058.
|
| [43] |
CUSTELCEAN R. Direct air capture of CO2 using solvents[J]. Annual Review of Chemical and Biomolecular Engineering,2022,13(1):217-234.
|
| [44] |
KIANI A,JIANG K,FERON P. Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process[J]. Frontiers in Energy Research,2020,8:92.
|
| [45] |
KIANI A,LEJEUNE M,LI C,et al. Liquefied synthetic methane from ambient CO2 and renewable H2-a technoeconomic study[J]. Journal of Natural Gas Science and Engineering,2021,94:104079.
|
| [46] |
HOSPITAL-BENITO D,MOYA C,GAZZANI M,et al. Direct air capture based on ionic liquids:from molecular design to process assessment[J]. Chemical Engineering Journal,2023,468:143630.
|
| [47] |
RANJANI V,SHEN M,FISHER E,et al. Adsorption of CO2 on molecular sieves and activated carbon[J]. Energy& Fuels,2001,15:279-284.
|
| [48] |
KARIMI M C,SILVA J,GONÇALVES C,et al. CO2 capture in chemically and thermally modified activated carbons using breakthrough measurements:experimental and modeling study[J]. Industrial& Engineering Chemistry Research,2018,57(32):11154-11166.
|
| [49] |
ABD A,OTHMAN M,KIM J. A review on application of activated carbons for carbon dioxide capture:present performance,preparation,and surface modification for further improvement[J]. Environmental Science and Pollution Research,2021,28(32):43329-43364.
|
| [50] |
SETHIA G,SAYARI A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture[J]. Carbon,2015,93:68-80.
|
| [51] |
KUMAR S,SRIVASTAVA R,KOH J. Utilization of zeolites as CO2 capturing agents:advances and future perspectives[J]. Journal of CO2 Utilization,2020,41(1). DOI: 10.1016/j.jcou.2020.101251.
|
| [52] |
TOMOYUKI I,OKUGAWA Y,YASUDA M. Relationship between properties of various zeolites and their CO2-adsorption behaviors in pressure swing adsorption operation[J]. Industrial& Engineering Chemistry Research,1988,27:1103-1109.
|
| [53] |
LI G,XIAO P,WEBLEY P,et al. Competition of CO2/H2O in adsorption based CO2 capture[J]. Energy Procedia,2009,1(1):1123-1130.
|
| [54] |
MADDEN D,SCOTT H,KUMAR A,et al. Flue-gas and direct-air capture of CO2 by porous metal-organic materials[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2017,375(2084):20160025.
|
| [55] |
XU X,SONG C,ANDRESEN J,et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy& Fuels,2002,16:1463-1469.
|
| [56] |
WEN J,GU F,WEI F,et al. One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent[J]. Journal of Materials Chemistry,2010,20(14):2840-2846.
|
| [57] |
GOEPPERT A,METH S,PRAKASH G,et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy& Environmental Science,2010,3(12):1949-1960.
|
| [58] |
TSUDA T,FUJIWARA T. Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents[J]. ChemInform,1993,24(7). DOI: 10.1002/chin.199307296.
|
| [59] |
BELMABKHOUT Y,SERNA-GUERRERO R,SAYARI A. Amine-bearing mesoporous silica for CO2 removal from dry and humid air[J]. Chemical Engineering Science,2010,65(11):3695-3698.
|
| [60] |
WURZBACHER J,GEBALD C,STEINFELD A. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel[J]. Energy& Environmental Science,2011,4(9):3584-3592.
|
| [61] |
AL-ABSI A,DOMIN A,MOHAMEDALI M,et al. CO2 capture using in-situ polymerized amines into pore-expanded-SBA-15:performance evaluation,kinetics,and adsorption isotherms[J]. Fuel,2023,333:126401.
|
| [62] |
CHAIKITTISILP W,LUNN J,SHANTZ D,et al. Poly(L-lysine)brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air[J]. Chemistry A European Journal,2011,17(38):10556-10561.
|
| [63] |
WILFONG W,KAIL B,JONES C,et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents:a new class 4 category[J]. ACS Applied Materials& Interfaces,2016,8(20):12780-12791.
|
| [64] |
KUMAR R,BANDYOPADHYAY M,PANDEY M,et al. Amine-impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide:a comparative study[J]. Microporous and Mesoporous Materials,2022,338:111956.
|
| [65] |
ZHU X,GE T,WU J,et al. Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air[J]. Cell Reports Physical Science,2021,2(7).
|
| [66] |
CHOI S,WATANABE T,BAE T,et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters,2012,3(9):1136-1141.
|
| [67] |
SKARSTROM C W. Method and apparatus for fractionating gaseous mixtures by adsorption:US71478058A[P]. US 2944627.[ 1960-12-07].
|
| [68] |
ZHU X,GE T,YANG F,et al. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air[J]. Renewable and Sustainable Energy Reviews,2021,137:110651.
|
| [69] |
LIVELY R,REALFF M. On thermodynamic separation efficiency:adsorption processes[J]. AIChE Journal,2016,62(10):3699-3705.
|
| [70] |
ELFVING J,BAJAMUNDI C,KAUPPINEN J. Characterization and performance of direct air capture sorbent[J]. Energy Procedia,2017,114:6087-6101.
|
| [71] |
YU Q,BRILMAN W. A radial flow contactor for ambient air CO2 capture[J]. Applied Sciences,2020,10(3):1080.
|
| [72] |
DRECHSLER C,AGAR D. Simulation and optimization of a novel moving belt adsorber concept for the direct air capture of carbon dioxide[J]. Computers& Chemical Engineering,2019,126:520-534.
|
| [73] |
ZHANG Z,XU H,HUA W,et al. Thermodynamics analysis of multi-stage temperature swing adsorption cycle for dilute CO2 capture,enrichment and purification[J]. Energy Conversion and Management,2022,265:115794.
|
| [74] |
WURZBACHER J,GEBALD C,BRUNNER S,et al. Heat and mass transfer of temperature-vacuum swing desorption for CO2 capture from air[J]. Chemical Engineering Journal,2016,283:1329-1338.
|
| [75] |
STAMPI-BOMBELLI V,VAN D,MAZZOTTI M. Analysis of direct capture of CO2 from ambient air via steam-assisted temperature–vacuum swing adsorption[J]. Adsorption,2020,26(7):1183-1197.
|
| [76] |
WANG T,LACKNER K,WRIGHT A. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science& Technology,2011,45(15):6670-6675.
|
| [77] |
YANG H,SINGH M,SCHAEFER J. Humidity-swing mechanism for CO2 capture from ambient air[J]. Chemical Communications,2018,54(39):4915-4918.
|
| [78] |
HOU C,WU Y,WANG T,et al. Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2[J]. Energy& Fuels,2018,33(3):1745-1752.
|
| [79] |
WANG T,WANG X,HOU C,et al. Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air[J]. Scientific Reports,2020,10(1):21429.
|
| [80] |
VÁZQUEZ F,KOPONEN J,RUUSKANEN V,et al. Power-to-X technology using renewable electricity and carbon dioxide from ambient air:soletair proof-of-concept and improved process concept[J]. Journal of CO2 Utilization,2018,28:235-246.
|
| [81] |
FASIHI M,EFIMOVA O,BREYER C. Techno-economic assessment of CO2 direct air capture plants[J]. J Clean Prod,2019,224:957-980.
|
| [82] |
WANG T,DONG H,HOU C L,et al. Review on CO2 adsorbents for direct air capture[J]. Journal of Zhejiang University(Engineering and Technology),2022,56(3):462-475. 王涛,董昊,侯成龙,等. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版),2022,56(3):462-475.
|
| [83] |
LACKNER K. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics,2009,176(1):93-106.
|
| [84] |
AGENCY I. Direct air capture a key technology for net zero[M]. OECD Publishing,2022.
|
| [85] |
FUJIKAWA S,SELYANCHYN R,KUNITAKE T. A new strategy for membrane-based direct air capture[J]. Polymer Journal,2020,53(1):111-119.
|
| [86] |
SODIQ A,ABDULLATIF Y,AISSA B,et al. A review on progress made in direct air capture of CO2[J]. Environmental Technology& Innovation,2023,29:102991.
|
| [87] |
CASTEL C,BOUNACEUR R,FAVRE E. Membrane processes for direct carbon dioxide capture from air:possibilities and limitations[J]. Frontiers in Chemical Engineering,2021,3:668867.
|
| [88] |
CASTRO-MUÑOZ R,ZAMIDI AHMAD M,MALANKOWSKA M,et al. A new relevant membrane application:CO2 direct air capture(DAC)[J]. Chemical Engineering Journal,2022,446:137047:2-13.
|
| [89] |
MOON S,SHIM J. A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption[J]. Journal of Colloid and Interface Science,2006,298(2):523-528.
|
| [90] |
LEE T,CHO J,CHI S. Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality[J]. Building and Environment,2015,92:209-221.
|
| [91] |
ERBEN J,HEUßNER A,THIELE S,et al. Activation of electrospun carbon fibers:the effect of fiber diameter on CO2 and steam reaction kinetics[J]. Journal of Polymer Research,2021,28(4):1-14.
|
| [92] |
SEVANTHI R,IRIN F,PARVIZ D,et al. Electrical current stimulated desorption of carbon dioxide adsorbed on graphene based structures[J]. RSC Advances,2016,6(49):43401-43407.
|
| [93] |
ZHAO Q,WU F,HE Y,et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology(ESA)[J]. Chemical Engineering Journal,2017,327:441-453.
|
| [94] |
ZHAO Q,WU F,MEN Y,et al. CO2 capture using a novel hybrid monolith(H-ZSM5/activated carbon)as adsorbent by combined vacuum and electric swing adsorption(VESA)[J]. Chemical Engineering Journal,2019,358:707-717.
|
| [95] |
GRANDE C,RIBEIRO R,RODRIGUES A. CO2 capture from NGCC power stations using electric swing adsorption(ESA)[J]. Energy& Fuels,2009,23:2797-2803.
|
| [96] |
BIEL-NIELSEN T,HATTON T,VILLADSEN S,et al. Electrochemistry-based CO2 removal technologies[J]. Chem Sus Chem,2023,16(11):e202202345.
|