| Citation: | NIU Yuqi, LIU Ning, DAI Chengna, XU Ruinian, WANG Ning, YU Gangqiang, CHEN Biaohua. Catalysts for C3H8/CO2 catalytic conversion to syngas and their performance evaluation[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 220-231. doi: 10.13205/j.hjgc.202507024 |
| [1] |
MEINSHAUSEN M,LEWIS J,MCGLADE C,et al. Realization of paris agreement pledges may limit warming just below 2 degrees C[J]. Nature,2022,604(7905):304-309.
|
| [2] |
KONDRATENKO E V,MUL G,BALTRUSAITIS J,et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic,photocatalytic and electrocatalytic processes[J]. Energy&Environmental Science,2013,6(11):3112-3135.
|
| [3] |
LUO R C,XU W,CHEN M,et al. Covalent triazine frameworks obtained from nitrile monomers for sustainable CO2 catalysis[J]. Chemsuschem,2020,13(24):6509-6522.
|
| [4] |
PRABHU P,JOSE V,LEE J M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction[J]. Advanced Functional Materials,2020,30(24):1910768.
|
| [5] |
YU K M K,CURCIC I,GABRIEL J,et al. Recent advances in CO2 capture and utilization[J]. Chemsuschem,2008,1(11):893-899.
|
| [6] |
SAEIDI S,AMIN N A S,RAHIMPOUR M R. Hydrogenation of CO2 to value-added products:a review and potential future developments[J]. Journal of CO2 Utilization,2014,5:66-81.
|
| [7] |
LI M M J,TSANG S C E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen:a mini-review and prospects[J]. Catalysis Science&Technology,2018,8(14):3450-3464.
|
| [8] |
SHAO B,SUN Z Y,ZHANG Y,et al. Research progress of carbon dioxide conversion to syngas and high value-added products[J]. Chemical Industry Progress,2022,41(3):1136-1151.邵斌,孙哲毅,章云,等.二氧化碳转化为合成气及高附加值产品的研究进展[J].化工进展,2022,41(3):1136-1151.
|
| [9] |
AZIZ M A A,SETIABUDI H D,TEH L P,et al. A review of heterogeneous catalysts for syngas production via dry reforming[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,101:139-158.
|
| [10] |
KANG J,He S,ZHOU W,et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nature Communications,2020,11(1):827.
|
| [11] |
GUO J,LOU H,ZHAO H,et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Applied Catalysis A:General,2004,273(1-2):75-82.
|
| [12] |
CAI W J. Research on catalysts for methane carbon dioxide reforming reaction[D]. Shanghai:Fudan University,2014.蔡雯佳.甲烷二氧化碳重整反应催化剂的研究[D].上海:复旦大学,2014.
|
| [13] |
WANG S,LU G Q,MILLAR G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:state of the art[J]. Energy&Fuels,1996,10(4):896-904.
|
| [14] |
JANG W J,JEONG D W,SHIM J O,et al. Combined steam and carbon dioxide reforming of methane and side reactions:Thermodynamic equilibrium analysis and experimental application[J]. Applied Energy,2016,173:80-91.
|
| [15] |
WANG H,NGUYEN T D,TSILOMELEKIS G. Propane oxidative dehydrogenation using CO2 over CrOx/Fe-CeO2 catalysts[J]. Catalysis Science&Technology,2023,13(8):2360-2369.
|
| [16] |
SIAHVASHI A,ADESINA A A. Synthesis gas production via propane dry (CO2) reforming:Influence of potassium promotion on bimetallic Mo-Ni/Al2O3[J]. Catalysis Today,2013,214:30-41.
|
| [17] |
KIM S M,ARMUTLULU A,KIERZKOWSKA A M,et al. Inverse opal-like,Ca3Al2O6-stabilized,CaO-based CO2 sorbent:stabilization of a highly porous structure to improve its cyclic CO2 uptake[J]. ACS Applied Energy Materials,2019,2(9):6461-6471.
|
| [18] |
TANG Y,WEI Y,WANG Z,et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for Dry Reforming of CH4[J]. Journal of the American Chemical Society,2019,141(18):7283-7293.
|
| [19] |
CHARISIOU N D,SIAKAVELAS G,PAPAGERIDIS K N,et al. Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts[J]. Journal of Natural Gas Science and Engineering,2016,31:164-183.
|
| [20] |
LIU D,QUEK X Y,CHEO W N E,et al. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane:Effect of strong metal-support interaction[J]. Journal of Catalysis,2009,266(2):380-390.
|
| [21] |
AMAKALI T,DANIEL L S,UAHENGO V,et al. Structural and optical properties of ZnO thin films prepared by molecular precursor and sol-gel methods[J]. Crystals,2020,10(2):132.
|
| [22] |
RABERG L B,JENSEN M B,OLSBYE U,et al. Propane dry reforming to synthesis gas over Ni-based catalysts:Influence of support and operating parameters on catalyst activity and stability[J]. Journal of Catalysis,2007,249(2):250-260.
|
| [23] |
ZENG R,JIN G,HE D,et al. Oxygen vacancy promoted CO2 activation over acidic-treated LaCoO3 for dry reforming of propane[J]. Materials Today Sustainability,2022,19:100162.
|
| [24] |
GOMEZ E,XIE Z,CHEN J G. The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane[J]. AIChE Journal,2019,65(8):e16670.
|
| [25] |
BARZEGARI F,KAZEMEINI M,REZAEI M,et al. Syngas production through CO2 reforming of propane over highly active and stable mesoporous NiO-MgO-SiO2 catalysts:Effect of calcination temperature[J]. Fuel,2022,322:124211.
|
| [26] |
AL-SHAFEI E,ALJISHI M,ALBAHAR M,et al. Effect of CO2/propane ratio and trimetallic oxide catalysts on maximizing dry reforming of propane[J]. Molecular Catalysis,2023,537:112945.
|
| [27] |
MSP S,HOSSAIN M M,GNANASEKARAN G,et al. Dry Reforming of propane over γ-Al2O3 and nickel foam supported novel SrNiO3 perovskite catalyst[J]. Catalysts,2019,9(1):68.
|
| [28] |
SHEN G,LIU H,WANG Q,et al. Self-template hydrothermal synthesis of CeO2 hollow nanospheres[J]. Journal of Nanoparticle Research,2012,14(6):1-8.
|
| [29] |
GUO J L,LI C Y,HU C F,et al. Structural characteristics and application prospects of reactive oxygen species and nano-cerium oxide[J]. Chinese Chemical Bulletin,2014,77(2):146-149.郭金玲,李常燕,胡长峰,等.活性氧和纳米氧化铈的结构特征及其应用前景[J].化学通报,2014,77(2):146-149.
|
| [30] |
WU Z,LI M,OVERBURY S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J]. Journal of Catalysis,2012,285(1):61-73.
|
| [31] |
PENG R,LI S,SUN X,et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental,2018,220:462-470.
|
| [32] |
LOPEZ J M,GILBANK A L,GARCIA T,et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation[J]. Applied Catalysis B:Environmental,2015,174:403-412.
|
| [33] |
SHEN D,HUO M,LI L,et al. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts[J]. Catalysis Science&Technology,2020,10(2):510-516.
|
| [34] |
WANG J L,MAO M Q,SHI X F,et al. Catalytic oxidation of toluene by CeO2 catalyzed by Pt particles[J]. Journal of Environmental Science,2020,40(5):1629-1639.王佳伶,毛梦绮,石雪风,等. Pt颗粒负载对CeO2臭氧催化氧化甲苯的增强作用[J].环境科学学报,2020,40(5):1629-1639.
|
| [35] |
PREISLER E J,MARSH O J,BEACH R A,et al. Stability of cerium oxide on silicon studied by X-ray photoelectron spectroscopy[J]. Journal of Vacuum Science&Technology B,2001,19(4):1611-1618.
|
| [36] |
WANG Z,HUANG Z,BROSNAHAN J T,et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion[J]. Environmental Science&Technology,2019,53(9):5349-5358.
|
| [37] |
GRABCHENKO M V,MAMONTOV G V,ZAIKOVSKII V I,et al. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation[J]. Applied Catalysis B:Environmental,2020,260:118148.
|
| [38] |
LEI Y,LI W,LIU Q,et al. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion[J]. Fuel,2018,233:10-20.
|
| [39] |
SAKPAL T,LEFFERTS L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. Journal of Catalysis,2018,367:171-180.
|
| [40] |
WANG Z,ZHANG B,YANG S,et al. Dual Pd2+and Pd0 sites on CeO2 for benzyl alcohol selective oxidation[J]. Journal of Catalysis,2022,414:385-393.
|
| [41] |
BAHARI M B,SETIABUDI H D,NGUYEN T D,et al. Insight into the influence of rare-earth promoter (CeO2,La2O3,Y2O3,and Sm2O3) addition toward methane dry reforming over Co/mesoporous alumina catalysts[J]. Chemical Engineering Science,2020,228:115967.
|
| [42] |
LI M,VAN VEEN A C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction[J]. Applied Catalysis B:Environmental,2018,237:641-648.
|
| [43] |
DENG G,ZHANG G,ZHU X,et al. Optimized Ni-based catalysts for methane reforming with O2-containing CO2[J]. Applied Catalysis B:Environmental,2021,289:120033.
|
| [44] |
LIU P,DERCHI M,HENSEN E J M. Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis[J]. Applied Catalysis B:Environmental,2014,144:135-143.
|
| [45] |
GUO D,LU Y,RUAN Y,et al. Effects of extrinsic defects originating from the interfacial reaction of CeO2-x-nickel silicate on catalytic performance in methane dry reforming[J]. Applied Catalysis B:Environmental,2020,277:119278.
|
| [46] |
LI X,LI D,TIAN H,et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B:Environmental,2017,202:683-694.
|
| [47] |
LI K,CHANG X,PEI C,et al. Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane[J]. Applied Catalysis B:Environmental,2019,259:118092.
|
| [48] |
QU J,LIU W,LIU R,et al. Evolution of oxygen vacancies in cerium dioxide at atomic scale under CO2 reduction[J]. Chem Catalysis,2023(3):100759.
|