Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
XU Yong, SONG Xiaowei, NIE Yaling, ZHU Min, XIONG Xinyang, ZHOU Jun, SONG Xiaoling, XIAO Xin. Optimization of equipment selection and air supply scheduling for industrial compressed air systems[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 158-168. doi: 10.13205/j.hjgc.202508014
Citation: XU Yong, SONG Xiaowei, NIE Yaling, ZHU Min, XIONG Xinyang, ZHOU Jun, SONG Xiaoling, XIAO Xin. Optimization of equipment selection and air supply scheduling for industrial compressed air systems[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 158-168. doi: 10.13205/j.hjgc.202508014

Optimization of equipment selection and air supply scheduling for industrial compressed air systems

doi: 10.13205/j.hjgc.202508014
  • Received Date: 2025-04-16
  • Accepted Date: 2025-08-19
  • Rev Recd Date: 2025-07-09
  • Compressed air systems (CAS) are essential infrastructure and crucial power sources in factories, but are also major energy consumers. Selecting optimal equipment combinations and air supply scheduling to match factory’s demand and system’s characteristics is a core energy-saving challenge that requires global optimization. This study proposed a joint scheduling optimization approach that integrating air compressor equipment selection with pipeline network load variations. By incorporating production demand, available compressor configurations, time-of-day tariffs, and uncertainties in air demand fluctuations, we constructed a mixed-integer linear programming (MILP) model aimed at minimizing energy consumption and investment cost of air compressors. Solving the model through global optimization enabled us to achieve optimal equipment combinations and peak-shifting air supply scheduling. By Applying to an industrial park-level CAS, the proposed method produced an overall decision plan including robust optimal equipment combinations and peak-shifting air usage scheduling. Under different air demand scenarios, the system’s peak load can be reduced by 18.05% to 27.16%, energy consumption saved by 33.33% to 34.56%, and annual total cost lowered by 28.35% to 31.42%( up to 24.88 million yuan). The results indicated that this optimization strategy, which primarily matches production demand with compressor operation on both the supply and demand sides, effectively balances economic benefits and energy-saving needs. It can provide significant guidance for upgrading and retrofitting CAS.
  • loading
  • [1]
    刘烨,魏高升,由文江,等.空气压缩系统深度节能技术[J].发电技术,2018,39(1):70-76. LIU Y, WEI G S, YOU W J, et al. Deep energy saving technology in air compression system[J]. Power Generation Technology,2018,39(1):70-76.
    [2]
    压缩机网.工业数据在压缩机系统能耗评估方面的价值[EB/ OL]. (2020-01-02)[/ 2024-10-27]. http://www. compressor. cn/magazinearticle/2020/0102/114076. html
    [3]
    邢长新.压缩空气系统建模与优化控制[D].杭州:杭州电子科技大学,2017. XING C X. Modeling and optimal control of compressed air system [D]. Hangzhou:Hangzhou Dianzi University,2017.
    [4]
    ABELA K,FRANCALANZA E,REFALO P. Utilisation of a compressed air test bed to assess the effects of pneumatic parameters on energy consumption[J]. Procedia CIRP,2020, (90):498-503.
    [5]
    NIMETI D,KEREM C. Regression analysis of the operational parameters and energy-saving potential of industrial compressed air systems[J]. Energy,2022,252.
    [6]
    FERRETTI I,ZANONI S,ZAVANELLA L E. Facility layout problem with auxiliary systems for energy efficiency [J]. International Journal of Systems Science,2023,54(14):2799-2808.
    [7]
    贺振强.压缩空气系统节能技术探讨[J].压缩机技术,2020(4):40-44. HE Z Q. Discussion on energy saving technology of compressed air system[J]. Compressor Technology,2020(4):40-44.
    [8]
    XIA Y D,WANG J,JIANG A P. Modeling and energy-efficient control of a compressed air system equipped with multicompressor[J]. Arabian Journal for Science and Engineering, 2023,49(5):7527-7543.
    [9]
    WANG W,ZHONG L L,LIU Y,et al. Coordinated predictive control of air compressor units based on fuzzy reinforcement learning[J]. Control and Decision,2023,38(8):2183-2191.
    [10]
    胡俊杰.空气压缩系统运行过程控制优化研究[D].杭州:杭州电子科技大学,2018. HU J J. Research on process control optimization of compressed air system[D]. Hangzhou:Hangzhou Dianzi University,2018.
    [11]
    王文超.空压机台数优化调度研究[D].沈阳:东北大学, 2019. WANG W C. Research on optimal scheduling of air compressor number [D]. Shenyang:Northeastern University,2019.
    [12]
    李达,吴玉成,何中炜,等.工业压缩空气系统优化调度方法[J].仪器仪表标准化与计量,2023(5):14-17. LI D,WU Y C,HE Z Y,et al. Data-driven optimal scheduling method for air compressor system[J]. Instrument Standardization and Metrology,2023(5):14-17.
    [13]
    BAYOUMI M A,ESAWY A M,SALIM O M. New symbolic model for multi-compressor operation based on multi-objective Jaya optimization for life/energy saving [J]. Ain Shams Engineering Journal,2023,14(12):102245.
    [14]
    ZHONG L L,LIU Y,ZHAO J,et al. Hierarchical reinforcement learning based operational optimization for compressed air system [J]. Control Engineering Practice,2023,136.
    [15]
    李辉,欧阳前武.钢铁厂压缩空气系统节能潜力案例分析[J].能源与节能,2014(2):81-83. LI H,OUYANG Q W. Case analysis of energy-saving potential of compressed air system of steel plant [J]. Energy and Conservation,2014(2):81-83.
    [16]
    ZAHLAN J. Optimization of air compressor location and capacity to improve energy efficiency and performance in manufacturing facilities[D]. Miami:University of Miami,2015.
    [17]
    AN J Y,PENG S N. Prediction and verification of risk loss cost for improved natural gas network layout optimization[J]. Energy, 2018,148:1181-1190.
    [18]
    DBOUK M H,HAYEK H,GHORAYEB K. Modular approach for optimal pipeline layout[J]. Journal of Petroleum Science and Engineering,2021,197:107934.
    [19]
    ZHOU J,HE Y,CHEN Y,et al. A novel optimization model for tackling capacity challenges in natural gas gathering systems[J]. Energy,2024,305:132377.
    [20]
    CHEN S Q, LIU T Q, DONG H L, et al. Generic layout optimization design methodology for China’s loop-star natural gas field pipeline network[J]. Natural Gas Industry B,2024,11(5):616-629.
    [21]
    OJO O B,LGIE U,PILIDIS P. Techno-economic optimisation of gas compressor station location as a decision variable [J]. Proceedings of ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition,2024(9):1-13.
    [22]
    蔡茂林.气动系统的节能[J].液压与气动,2013(8):1-8. CAI M L. Energy saving technology on pneumatic systems[J]. Chinese Hydraulics & Pneumatics,2013(8):1-8.
    [23]
    上海琪云工业科技有限公司.一种智能稳压流量控制器: CN202321314565. 8[P]. 2024-04-05. Shanghai Qiyun Industrial Technology Co. , Ltd. Intelligent pressure-stabilizing flow controller:CN202321314565. 8[P]. 2024-04-05.
    [24]
    彭青松.空压机的稳压节能技术运用[J].汽车实用技术, 2020,45(21):73-76. PENG Q S. Application of pressure stabilizing and energy saving technology of air compressor[J]. Automobile Technology,2020, 45(21):73-76.
    [25]
    邯郸钢铁集团有限责任公司,邯钢集团邯宝钢铁有限公司.一种压缩空气喷嘴:CN202020094295. 4[P]. 2020-11-03. Handan Iron and Steel Group Co. ,Ltd. ,Hanbao Steel Co. , Ltd. of Hansteel Group. Compressed air nozzle: CN202020094295. 4[P]. 2020-11-03.
    [26]
    周雪萍,段宏敏,周克江.压缩空气供应管理的低碳运行探讨[J].广船科技,2011,31(2):42-45. ZHOU X P,DUAN H M,ZHOU K J. Discussion on low-carbon operation of compressed air supply management[J]. Guangchuan Science and Technology,2011,31(2),42-45.
    [27]
    任金鑫.离心式空压机吸气预处理方案与空压站通风降温分析研究[D].西安:西安工程大学,2021. REN J X. Study on preconditioning scheme of inspiration of centrifugal air compressor and analysis of ventilation and cooling of air compressor station [D]. Xi’an:Xi’an Polytechnic University,2021.
    [28]
    崔琪琪.纺织空压机入口空气预处理的节能优化研究[D].西安:西安工程大学,2021. CUI Q Q. Research on energy saving optimization of air pretreatment at textile air compressor inlet[D]. Xi’an:Xi’an Polytechnic University,2021.
    [29]
    王聪民,高龙,周义德,等.喷气织机用空压机吸气预处理的节能性探讨[J].棉纺织技术,2023,51(4):39-43. WANG C M,GAO L,ZHOU Y D,et al. Discussion on energy saving of air compressor suction pretreatment for air-jet loom[J]. Cotton Textile Technology,2023,51(4):39-43.
    [30]
    SARODE R P,VINCHURKAR S M. An approach to recovering heat from the compressed air system based on waste heat recovery: a review[J]. Energy Sources, Part A: Recovery, Utilization,and Environmental Effects,2023,45(3):9465-9484.
    [31]
    张淼,费营营.钢铁企业喷油螺杆空压机的余热利用设计[J].矿业工程,2023,21(4):56-59. ZHANG M, FEI Y Y. Waste heat utilization design of oil injection screw air compressor in iron and steel enterprises[J]. Mining Engineering,2023,21(4):56-59.
    [32]
    宋涛涛,槐鲜妮,程思勇,等.压缩空气余热利用及减排效果研究[J].油气田地面工程,2023,42(6):79-83. SONG T T,HUAI X N,CHENG S Y,et al. Research on waste heat utilization and emission reduction effect of compressed air [J]. Oil-Gasfield Surface Engineering,2023,42(6):79-83.
    [33]
    NAZIFA F N,JUAN E,OSAMA M S,et al. Energy,exergy, and emission analysis on industrial air compressors[J]. Journal of Energy Resources Technology,2021,1-34.
    [34]
    潘弘,王金鹏,张明杰,等.玻璃工厂压缩空气应用与优化[J].玻璃,2022,49(12):27-29. PAN H,WANG J P,ZHANG M J. Application and optimization of compressed air in glass factory[J]. Glass,2022,49(12): 27-29.
    [35]
    赵艳.玻璃基板制造厂洁净压缩空气系统节能方法[J].玻璃,2023,50(7):52-54. ZHAO Y. Energy saving method of clean compressed air system in glass substrate factory.[J]. Glass,2023,50(7):52-54.
    [36]
    张璞锜.钢铁企业压缩空气系统节能改造分析[J].冶金标准化与质量,2023,61(2):45-47. ZHANG P Q. Analysis on energy saving transformation of compressed air system in iron and steel enterprises [J]. Metallurgical Standardization & Quality,2023,61(2):45-47.
    [37]
    龙德柱,吴燕斌,王红.云南某选矿厂空压站节能改造研究[J].磷肥与复肥,2024,39(4):47-48. LONG D Z,WU Y B,WANG H. Energy saving transformation for air compressor station in a concentrator of Yunnan province [J]. Eco-industry Science & Phosphorus Fluorine Engineering, 2024,39(4):47-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (73) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return