Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Han, CHEN Yumin, LIU Hongying, LI Fuxiang, WEI Yang, XIANG Sijing, JIANG Xiaoqian, CHANG Zhengwei. A review of life cycle carbon footprint accounting methodologies for power generation[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 255-269. doi: 10.13205/j.hjgc.202508024
Citation: ZHANG Han, CHEN Yumin, LIU Hongying, LI Fuxiang, WEI Yang, XIANG Sijing, JIANG Xiaoqian, CHANG Zhengwei. A review of life cycle carbon footprint accounting methodologies for power generation[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 255-269. doi: 10.13205/j.hjgc.202508024

A review of life cycle carbon footprint accounting methodologies for power generation

doi: 10.13205/j.hjgc.202508024
  • Received Date: 2025-05-23
  • Accepted Date: 2025-07-21
  • Rev Recd Date: 2025-06-28
  • As a core component of the national energy system, the power system plays a pivotal role in achieving the Dual Carbon Goals. Due to its long industrial chain and complex processes, the carbon emissions of the power industry exhibit distinct phase and structural characteristics. The life-cycle carbon footprint accounting method, which tracks greenhouse gas emissions throughout the entire process from resource extraction to end use, provides a theoretical foundation and data support for systematically identifying and optimizing carbon reduction pathways. Based on the fundamental concept of carbon footprint, this paper systematically reviewed typical carbon emission links on the power generation side and across the entire power system, and compared the application scenarios, advantages, and limitations of process analysis methods, input-output methods, and hybrid methods. Additionally, it evaluated the application features of mainstream databases and accounting tools such as ecoinvent, Sphera, and the International Energy Agency (IEA) in the analysis of power carbon footprints, conducted comparative analysis in terms of system boundary definition, model structure, and data sources. On this basis, in conjunction with key directions such as the development of multi-energy complementarity, the enhancement of regional adaptability, the refinement of data processing, and the establishment of accounting standard systems, this paper anticipated the future development direction of life-cycle carbon footprint accounting in the power system. The research findings can provide technical support for the refined management of carbon emissions in the power industry and offer decision-making references for the formulation of green and low-carbon policies and the selection of low-carbon technologies.
  • loading
  • [1]
    国务院新闻办公室.国新办举行聚焦增强核心功能、提升核心竞争力,更好实现中央企业高质量发展新闻发布会[EB/OL]. (2024-01-24)[2025-06-30]. http://www. scio. gov. cn/live/ 2024/33269/index. html. State Council Information Office. State council information office holds press conference on "focusing on enhancing core functions and core competitiveness to better realize high-quality development of central state-owned enterprises" [EB/OL]. (2024-01-24)[2025-06-30]. http://www. scio. gov. cn/live/ 2024/33269/index. html.
    [2]
    JORDAAN S M, COMBS C, GUENTHER E. Life cycle assessment of electricity generation: A systematic review of spatiotemporal methods[J]. Advances in Applied Energy,2021(3):100058.
    [3]
    BARROS M V,SALVADOR R,PIEKARSKI C M,et al. Life cycle assessment of electricity generation: a review of the characteristics of existing literature[J]. The International Journal of Life Cycle Assessment,2020,25(1):36-54.
    [4]
    朱继忠,周迦琳,张迪.清洁能源和电力系统碳足迹全生命周期核算综述[J].中国电机工程学报,2025,45(4):1323-1343. ZHU J Z,ZHOU J L,ZHANG D. Review of full life-cycle carbon footprints accounting of clean energy and power systems [J]. Proceedings of the CSEE,2025,45(4):1323-1343.
    [5]
    ZHU H S, LI M, XIA L C. Dynamic Analysis on Carbon Footprint of Energy Utlization in Guangdong Province [J]. Applied Mechanics and Materials,2013,291/294:1471-1477.
    [6]
    NIE H,XU J. Dynamic analysis of industrial carbon footprint and carbon-carrying capacity of zhejiang province in China [J]. Sustainability,2022(14):16824.
    [7]
    靳晓婷,蔡瀚尊,白云峰,等.不同电力组合对Power-toMethanol生产碳足迹的影响[J/OL].环境工程学报:1-12[2025-08-29]. https://link. cnki. net/urlid/11. 5591. x. 20250429. 1043. 005. JIN X T, CAI H Z, BAI Y F, et al. Impacts of different electricity mixes on the carbon footprint of Power-to-Methanol production [J/OL]. Chinese Journal of Environmental Engineering:1-12[2025-08-29]. https://link. cnki. net/urlid/ 11. 5591. x. 20250429. 1043. 005.
    [8]
    WACKERNAGEL M, REES W. Our ecological footprint : reducing human impact on the earth[M]. Gabriola Island:New Society Publishers,1996.
    [9]
    单思珂,刘含笑,刘美玲,等.我国火电行业碳足迹评估综述[J].发电技术,2024,45(4):575-589. SHAN S K,LIU H X,LIU M L,et al. Review of carbon footprint for thermal power industry in China [J]. Power Generation Technology,2024,45(4):575-589.
    [10]
    刘含笑,单思珂,魏书洲,等.基于生命周期法的煤电碳足迹评估[J].中国电力,2024,57(7):227-237. LIU H X, SHAN S K, WEI S Z, et al. Life-cycle carbon footprint assessment of coal-fired power generation[J]. Electric Power,2024,57(7):227-237.
    [11]
    International Organization for Standardization(ISO). ISO 14044: 2006:Environmental management — Life cycle assessment — Requirements and guidelines[S/OL]. [2025-06-30]. https:// www. iso. org/obp/ui/#iso:std:iso:14044:ed-1:v1:en.
    [12]
    International Organization for Standardization(ISO). ISO 14067: 2018: Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification [S/OL]. [2025-06-30]. https://www. iso. org/obp/ui/#iso:std:iso:14067:ed-1: v1:en.
    [13]
    British Standards Institution. PAS 2050:2011:Specification for the assessment of the life cycle greenhouse gas emissions of goods and services[S/OL]. [2025-06-30]. https://www. bsigroup. com/zh-CN/pas-2050/.
    [14]
    World Resources Institute (WRI),World Business Council for Sustainable Development (WBCSD). Standards & Guidance | GHG Protocol[S/OL]. [2025-06-30]. https://ghgprotocol. org/ standards-guidance.
    [15]
    ZAMPORI L,PANT R. Suggestions for updating the Product Environmental Footprint (PEF) method [S]. Luxembourg: Publications Office of the European Union,2019.
    [16]
    中华人民共和国生态及环境部,中国标准化研究院.温室气体产品碳足迹量化要求和指南:GB/T 24067—2024[S].北京:中国标准出版社,2024. Ministry of Ecology and Environment of the People's Republic of China,China National Institute of Standardization. GB/T 24067— 2024:Greenhouse gases carbon footprint of products requirements and guidelines for quantification [S]. Beijing:China Standards Press,2024.
    [17]
    冯超.基于HLCA的电动汽车规模化发展对能耗及环境影响研究[D].北京:中国矿业大学(北京),2017. FENG C. Research on energy and environmental impact of electric vehicle based on HLCA[D]. Beijing:China University of Mining & Technology,2017.
    [18]
    WEIDEMA B,BRANDAO M. Life cycle assessment:theory and practice[J]. Journal of Industrial Ecology, 2020, 24(3): 726-730.
    [19]
    刘菁.碳足迹视角下中国建筑全产业链碳排放测算方法及减排政策研究[D].北京:北京交通大学,2019. LIU J. Study on the carbon emission measurement method and emission reduction policies of China's construction industry chain from the perspective of carbon footprint[D]. Beijing:Beijing Jiaotong University,2019.
    [20]
    Hellweg S, Benetto E, Huijbregts M A J, et al. Life-cycle assessment to guide solutions for the triple planetary crisis[J]. Nature Reviews Earth & Environment,2023,4(7):471-486.
    [21]
    AURORA LUSCHER S. Greening construction processes using an input-output-based hybrid life cycle assessment method -ProQuest [D]. Pittsburgh, United States: Carnegie Mellon University,2007.
    [22]
    BILEC M M. A hybrid life cycle assessment model for construction processes[D]. Pittsburgh,United States:University of Pittsburgh,2007.
    [23]
    FINNVEDEN G,HAUSCHILD M Z,EKVALL T,et al. Recent developments in life cycle assessment [J]. Journal of Environmental Management,2009,91(1):1-21.
    [24]
    YAN N, LIU G, RIPA M, et al. From local to national metabolism:A review and a scale-up framework[J]. Ecosystem Health and Sustainability,2020,6(1):1839358.
    [25]
    BELOIN-Saint-Pierre D,RUGANI B,LASVAUX S,et al. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation[J]. Journal of Cleaner Production,2017,163:S223-S240.
    [26]
    MUNKSGAARD J,WIER M,LENZEN M,et al. Using input ‐ output analysis to measure the environmental pressure of consumption at different spatial levels[J]. Journal of Industrial Ecology,2005,9(1-2):169-185.
    [27]
    HAN J,TAN Z,CHEN M. Carbon footprint research based on input-output model:A global scientometric visualization analysis [J]. International Journal of Environmental Research and Public Health,2022,19(18):11343.
    [28]
    LIANG Y,ZHANG Y,WANG Y,et al. Chinese electricityfocused input-output dataset with detailed coal power and alternative energy for 2018[J]. Scientific Data, 2023, 10(1):553.
    [29]
    张琦峰,方恺,徐明,等.基于投入产出分析的碳足迹研究进展[J].自然资源学报,2018,33(4):696-708. ZHANG Q F,FANG K,XU M,et al. Review of carbon footprint research based on input-output analysis[J]. Journal of Natural Resources,2018,33(4):696-708.
    [30]
    ZHAO Q,PAN C,ZHANG Z,et al. An inter-regional inputoutput table series of China from 1987-2017 with integrated carbon emission data[J]. Scientific Data,2024,11(1):1335.
    [31]
    LIAO X,TIAN Y,GAN Y,et al. Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method:an application on shenzhen city in China [J]. Science of the Total Environment,2020,745:141176.
    [32]
    CRAWFORD R H, BONTINCK P A, STEPHAN A, et al. Hybrid life cycle inventory methods :a review[J]. Journal of Cleaner Production,2018,172:1273-1288.
    [33]
    TRELOAR G J. Extracting embodied energy paths from input-output tables:towards an input-output-based hybrid energy analysis method: economic systems research [J]. Economic Systems Research,1997,9(4):375-391.
    [34]
    CAZCARRO I, USUBIAGA-Liaño A, ROMÁN M V, et al. FIGARO-E3:A high-resolution extended multi-regional inputoutput database consistent with official statistics[J]. Scientific Data,2025,12(1):575.
    [35]
    SUH S,LENZEN M,TRELOAR G J,et al. System boundary selection in life-cycle inventories using hybrid approaches[J]. Environmental Science & Technology,2004,38(3):657-664.
    [36]
    SUH S, HUPPES G. Missing inventory estimation tool using extended input-output analysis[J]. The International Journal of Life Cycle Assessment,2002,7(3):134-140.
    [37]
    刘祚希,魏莹莹,李彦龙,等.混合生命周期方法的发展、应用与挑战[J].生态学杂志,2024,43(9):2824-2833. LIU Z X,WEI Y Y,LI Y L,et al. Development,application and challenges of hybrid life cycle approaches[J]. Chinese Journal of Ecology,2024,43(9):2824-2833.
    [38]
    SUH S,NAKAMURA S. Five years in the area of input-output and hybrid LCA[J]. The International Journal of Life Cycle Assessment,2007,12(6):351-352.
    [39]
    YANG Y, HEIJUNGS R, BRANDÃO M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA [J]. Journal of Cleaner Production,2017,150:237-242.
    [40]
    孙菁阳,孔祥玉,陈一,等.电力系统全环节碳排放核算方法综述[J/OL].电力系统自动化,2024. SUN J Y, KONG X Y, CHEN Y, et al. Review of carbon emission accounting methods for power system [J/OL]. Automation of Electric Power Systems,2024.
    [41]
    LI J,ZHANG Y,TIAN Y,et al. Reduction of carbon emissions from China’s coal-fired power industry: insights from the province-level data[J]. Journal of Cleaner Production,2020, 242:118518.
    [42]
    JOHNSON S C,RHODES J D,WEBBER M E. Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways[J]. Applied Energy, 2020,262:114492.
    [43]
    PETRESCU L,BONALUMI D,VALENTI G,et al. Life cycle assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage [J]. Journal of Cleaner Production,2017,157:10-21.
    [44]
    PEHNT M,HENKEL J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants[J]. International Journal of Greenhouse Gas Control,2009,3(1):49-66.
    [45]
    FENG K,HUBACEK K,SIU Y L,et al. The energy and water nexus in chinese electricity production:a hybrid life cycle analysis [J]. Renewable and Sustainable Energy Reviews,2014,39: 342-355.
    [46]
    CHANG Y,HUANG R,RIES R J,et al. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China[J]. Energy,2015,86: 335-343.
    [47]
    单思珂.基于生命周期评价的火力发电碳足迹评估方法及案例分析[D].北京:华北电力大学(北京),2024. SHAN K S. Method and case analysis of thermal power generation carbon footprint assessment based on life cycle assessment[D]. Beijing:North China Electric Power University,2024.
    [48]
    CHEN G Q,ZHANG B. Greenhouse gas emissions in China 2007:inventory and input-output analysis[J]. Energy Policy, 2010,38(10):6180-6193.
    [49]
    CHEN G Q,WU X F. Energy overview for globalized world economy:source,supply chain and sink[J]. Renewable and Sustainable Energy Reviews,2017,69:735-749.
    [50]
    ALLAH F U M,MARQUES A D S,CARVALHO M. Current status,challenges and future prospects of carbon capture and storage (CCS) for thermal power plants in Brazil [J]. International Journal of Greenhouse Gas Control, 2024, 136: 104198.
    [51]
    TAN Z,ZENG X,LIN B. How do multiple policy incentives influence investors’decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?[J]. Energy,2023,278:127822.
    [52]
    HOMSY S,SCHMITT T,LEPTINSKY S,et al. Insights from FEED studies for retrofitting existing fossil power plants with carbon capture technology [J]. International Journal of Greenhouse Gas Control,2025,140:104268.
    [53]
    TAO Y, BRANDER M. A comparative prospective life cycle assessment of coal-fired power plants in the US with MEA/MOFbased carbon capture[J]. Journal of Cleaner Production,2024, 456:142418.
    [54]
    沈海燕,李芳芹,任建兴,等.化学吸收法捕集二氧化碳的研究进展[J].无机盐工业,2024,56(5):11-19. SHEN H Y,LI F Q,REN J X,et al. Research progress on chemical absorption method for capturing carbon dioxide[J]. Inorganic Chemicals Industry,2024,56(5):11-19.
    [55]
    余潜跃,张玉琼,赵强,等.综合能源生产单元的全生命周期碳足迹评价与技术经济性评估[J].中国电机工程学报, 2024,44(8):3115-3125. YU Q Y,ZHANG Y Q,ZHAO Q,et al. Life-cycle carbon footprint assessment and techno-economic analysis of integrated energy production unit[J]. Proceedings of the CSEE,2024,44(8):3115-3125.
    [56]
    GAZDA-GRZYWACZ M, WINCONEK Ł, BURMISTRZ P. Carbon footprint for Mercury capture from coal-fired boiler flue gas [J]. Energies,2021,14(13):3844.
    [57]
    ZHANG L. Carbon footprint accounting for gas power plant carbon capture and storage system[C] //Abomohra A E F,Su R,Rahman M W,et al. Proceedings of the 20239th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2023). Dordrecht: Atlantis Press International BV,2024:217-225.
    [58]
    LIU X,YU H,LIU H,et al. Life cycle carbon footprint analysis of deep load regulation in coal-fired power plants based on machine learning:a case study of a 1000 MW unit in hunan province[J]. Case Studies in Thermal Engineering,2025,68: 105861.
    [59]
    孙志禹,陈永柏,李翀,等.中国水库温室气体研究(2009— 2019):回顾与展望[J].水利学报,2020,51(3):253-267. SUN Z Y, CHEN Y B, LI C, et al. Research of reservoir greenhouse gas emissions in China(2009—2019):Review and outlook[J]. Shuili Xuebao,2020,51(3):253-267.
    [60]
    李哲,王殿常.从水库温室气体研究到水电碳足迹评价:方法及进展[J].水利学报,2022,53(2):139-153. LI Z,WANG D C. From reservoir greenhouse gas emissions to hydropower carbon footprint: methodology and advances[J]. Shuili Xuebao,2022,53(2):139-153.
    [61]
    李朋,白孝轩,丁宁,等.水电碳足迹关键影响因素及区域化研究趋势[J].中国环境科学,2025,45(4):2251-2263. LI P, BAI X X, DING N, et al. Key factors influencing hydropower carbon footprint assessment and geo-regional research trends[J]. China Environmental Science,2025,45(4):2251-2263.
    [62]
    李雨晨.长江上游大中型水利水电工程全生命周期碳足迹核算[D].重庆:重庆交通大学,2023. LI Y C. Carbon footprint accounting of the life cycle of large and medium-sized hydropower projects in the upper Yangtze River [D]. Chongqing:Chongqing Jiaotong University,2023.
    [63]
    刘含笑,朱前林,林青阳,等.基于LCA方法的光伏产品碳足迹量化评价与低碳设计[J].环境工程学报,2024,18(10): 2972-2981. LIU H X,ZHU Q L,LIN Q Y,et al. Carbon footprint evaluation and low carbon design of China’s photovoltaic products based on LCA methodology [J]. Chinese Journal of Environmental Engineering,2024,18(10):2972-2981.
    [64]
    MUGENT D, SOVACOOL B K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey[J]. Energy Policy,2014,65:229-244.
    [65]
    FARRELL C C,OSMAN A I,DOHERTY R,et al. Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules [J]. Renewable and Sustainable Energy Reviews,2020,128:109911.
    [66]
    FERRARA C,MARMIROLI B,CARVALHO M L,et al. Life cycle assessment of photovoltaic electricity production in italy: current scenario and future developments[J]. Science of the Total Environment,2024,948:174846.
    [67]
    KIM H C,FTHENAKIS V,CHOI J,et al. Life cycle greenhouse gas emissions of thin ‐ film photovoltaic electricity generation: systematic review and harmonization[J]. Journal of Industrial Ecology,2012,16(s1).
    [68]
    FTHENAKIS V M, FUHRMANN M, HEISER J, et al. Emissions and encapsulation of cadmium in CdTe PV modules during fires [J]. Progress in Photovoltaics: Research and Applications,2005,13(8):713-723.
    [69]
    PARISI M L,SINICROPI A,BASOSI R. Life cycle assessment of thin film non conventional photovoltaics: the case of dye sensitized solar cells[C] //International Conference on Efficiency. 2012.
    [70]
    ALSEMA E. Energy payback time and CO2 emissions of PV systems[M] //McEvoy A, Markvart T, Castañer L. Practical Handbook of Photovoltaics(Second Edition). Boston:Academic Press,2012:1097-1117.
    [71]
    ŞENGÜL H,THEIS T L. An environmental impact assessment of quantum dot photovoltaics(QDPV)from raw material acquisition through use[J]. Journal of Cleaner Production,2011,19(1): 21-31.
    [72]
    陈雅禾,丁宁,白孝轩,李朋,李超,杨建新.风力发电及储能系统碳足迹分析[J].中国环境科学. 2025,45(5):2926-2931.

    CHEN Y H,DING N,BAI X X,et al. Carbon footprint analysis of wind power system with generation and storage[J]. China Environmental Science,2025,45(5):2926-2931.
    [73]
    中华人民共和国生态及环境部,中华人民共和国国家统计局,中华人民共和国国家能源局.关于发布2023年电力碳足迹因子数据的公告[EB/OL]. (2025-01-21

    )[2025-04-23]. https:// www. mee. gov. cn/xxgk2018/xxgk/xxgk01/202501/t20250123_ 1101226. html. Ministry of Ecology and Environment of the People's Republic of China,National Bureau of Statistics of the People's Republic of China,National Energy Administration of the People's Republic of China. Announcement on issuing 2023 electricity carbon footprint factor data [EB/OL]. (2025-01-21)[2025-04-23]. https://www. mee. gov. cn/xxgk2018/xxgk/xxgk01/202501/ t20250123_1101226. html.
    [74]
    LIU P, LIU L, XU X, et al. Carbon footprint and carbon emission intensity of grassland wind farms in inner mongolia[J]. Journal of Cleaner Production,2021,313:127878.
    [75]
    OZSAHIN B,ELGINOZ N,GERMIRLI BABUNA F. Life cycle assessment of a wind farm in Turkey[J]. Environmental Science and Pollution Research,2022,29(47):71000-71013.
    [76]
    VÉLEZ-HENAO J A, VIVANCO D F. Hybrid life cycle assessment of an onshore wind farm including direct and indirect services: a case study in guajira, colombia[J]. Journal of Environmental Management,2021,284:112058.
    [77]
    LI Q,DUAN H,XIE M,et al. Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure[J]. Renewable and Sustainable Energy Reviews, 2021,138:110499.
    [78]
    RUAN Z,LU X,YIN Z,et al. Spatiotemporal carbon footprint and associated costs of wind power toward China’s carbon neutrality[J]. Resources,Conservation and Recycling,2024,205:107593.
    [79]
    BONOU A,LAURENT A,OLSEN S I. Life cycle assessment of onshore and offshore wind energy-from theory to application[J]. Applied Energy,2016,180:327-337.
    [80]
    EDRIS A A. Opportunities and challenges of integrating wind, solar and other distributed generation & energy storage:effects on and values for the grid[C]//2012 IEEE Power and Energy Society General Meeting. 2012:1-4.
    [81]
    KALDELLIS J K,APOSTOLOU D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart [J]. Renewable Energy,2017,108:72-84.
    [82]
    PINCELLI I P,HINKLEY J,BRENT A. Developing offshore wind farms in aotearoa new zealand:an analysis of life cycle carbon emissions,materials and energy implications[J]. Wind Energy,2025,28(4):e70009.
    [83]
    ITTEN R, FRISCHKNECHT R, STUCKI M. Life cycle inventories of electricity mixes and grid[R]. Paul Scherrer Institut,2012.
    [84]
    TREYER K, BAUER C. Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database —part I:electricity generation[J]. The International Journal of Life Cycle Assessment,2016,21(9):1236-1254.
    [85]
    TREYER K, BAUER C. Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database —part II:electricity markets[J]. The International Journal of Life Cycle Assessment,2016,21(9):1255-1268.
    [86]
    胡翠娜,黄汉军. 电气部件与组件的安装与调试[M]. 上海: 上海科学技术出版社,2019. HU C N, HUANG H J. Installation and commissioning of electrical components and assemblies[M]. Shanghai:Shanghai Scientific and Technical Publishers,2019.
    [87]
    黄卓晖,蒋小谦. 国际碳足迹数据库对中国的启发:以电力碳足迹为例[J]. 气候政策与绿色金融(季报),2025(10). HUANG Z H,JIANG X Q,The Inspiration of the international carbon footprint database for China:Taking the carbon footprint of electricity as an example[J]. Climate Policy and Green Finance (Quarterly Update),2025(10).
    [88]
    PAUER E,WOHNER B,TACKER M. The influence of database selection on environmental impact results. Life cycle assessment of packaging using gabi,ecoinvent 3. 6,and the environmental footprint database[J]. Sustainability,2020,12(23):9948.
    [89]
    KALVERKAMP M,HELMERS E,PEHLKEN A. Impacts of life cycle inventory databases on life cycle assessments:a review by means of a drivetrain case study [J]. Journal of Cleaner Production,2020,269:121329.
    [90]
    International energy agency. Life cycle Upstream Emission Factors 2024-Database documentation[EB/OL]. (2024-09) [2025-08-28]. https://www. iea. org/data-and-statistics/dataproduct/life-cycle-upstream-emissions-factors-2024-2.
    [91]
    ANDREASI BASSI S,PETERS J F,CANDELARESI D,et al. Rules for the calculation of the carbon footprint of electric vehicle batteries(CFB-EV)[S]. Luxembourg:Publications Office of the European Union,2023.
    [92]
    European Platform. Nodes containing EF data[EB/OL]. (2023- 06)[2025-04-29]. https://eplca. jrc. ec. europa. eu/LCDN/ contactListEF. html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return