| Citation: | QIU Junjie, WU Siyuan, YANG Yuan, CHEN Rong, HU Yisong. Effects of electroflocculation-membrane process on concentration characteristics of organic matter in domestic wastewater and its methane production potential[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 28-37. doi: 10.13205/j.hjgc.202512004 |
| [1] |
KUOKKANEN V,KUOKKANEN T,RÄMÖ J,et al. Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes-Techno-economic studies[J]. Journal of Water Process Engineering,2015(8):50-57.
|
| [2] |
SARDARI K,ASKEGAARD J,CHIAO Y,et al. Electrocoagulation followed by ultrafiltration for treating poultry processing wastewater[J]. Journal of Environmental Chemical Engineering,2018,6(4):4937-4944.
|
| [3] |
LI H J,CHANG J L,LIU P F,et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental Microbiology,2015,17(5):1533-1547.
|
| [4] |
DENG W H. Process characteristics of integrated electroflocculation-membrane for enhancing wastewater Carbon sources pre-concentration and methane fermentation[D]. Xi'an:Xi'an University of Architecture and Technology,2024. 邓伟航. 电絮凝-膜耦合强化污水碳源浓缩及甲烷发酵的工艺特性研究[D]. 西安:西安建筑科技大学,2024.
|
| [5] |
GUDE V G. Energy and water autarky of wastewater treatment and power generation systems[J]. Renewable and Sustainable Energy Reviews,2015,45:52-68.
|
| [6] |
HU Y S,WANG X C,SUN Q Y,et al. Cpowdered activated carbon-dynamic membrane bioreactor(PAC-DMBR)process with high flux by gravity flow:operational performance and sludge properties[J]. Bioresource Technology,2017,223:65-73.
|
| [7] |
环境保护部. 水质 五日生化需氧量(BOD₅)的测定 稀释与接种法:HJ 505—2009[S]. 北京:中国环境科学出版社,2009.
|
| [8] |
国家技术监督局. 水质 总磷的测定 钼酸铵分光光度法:GB/T 11893—1989[S]. 北京:中国标准出版社,1989.
|
| [9] |
国家技术监督局. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法:GB/T 11894—1989[S]. 北京:中国标准出版社,1989.
|
| [10] |
环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法:HJ 535—2009[S]. 北京:中国环境科学出版社,2009.
|
| [11] |
GINKEL S V,SUNG S,LAY J. Biohydrogen production as a function of pH and substrate concentration[J]. Environmental Science& Technology,2001,35(24):4726-4730.
|
| [12] |
SOPHONSIRI C,MORGENROTH E. Chemical composition associated with different particle size fractions in municipal,industrial,and agricultural wastewaters[J]. Chemosphere,2004,55(5):691-703.
|
| [13] |
COSSU R,LAI T,SANDON A. Standardization of BOD5/COD ratio as a biological stability index for MSW[J]. Waste Management,2012,32(8):1503-1508.
|
| [14] |
SHI B G. Discussion on the inflow water quality of sewage treatment plant of small towns[J]. Journal of Municipal Technology,2013,31(3):125-127. 石必刚. 小城镇污水厂进水水质特性探讨[J]. 市政技术,2013,31(3):125-127.
|
| [15] |
ZHANG L L,CHEN L,GUO X F,et al. Characterization of influent water quality in southern and northern wastewater treatment plants[J]. Water Supply and Drainage,2012,38(1):45-49. 张玲玲,陈立,郭兴芳,等. 南北方污水处理厂进水水质特性分析[J]. 给水排水,2012,38(1):45-49.
|
| [16] |
RAVNDAL K T,OPSAHL E,BAGI A,et al. Wastewater characterisation by combining size fractionation,chemical composition and biodegradability[J]. Water Research,2018,131:151-160.
|
| [17] |
MA M D. Pollutants removal from domestic wastewater using electrocoagulation/electro-oxidation method[D]. Beijing:China University of Geosciences,2015 马马度. 电絮凝/电氧化法处理生活污水中污染物质的研究[D]. 北京:中国地质大学,2015.
|
| [18] |
YANG Y,HU Y S,DUAN A,et al. Characterization of preconcentrated domestic wastewater toward efficient bioenergy recovery:Applying size fractionation,chemical composition and biomethane potential assay[J]. Bioresource Technology,2021,319:124144.
|
| [19] |
LE T S,DANG N M,TRAN D T. Performance of coupling electrocoagulation and biofiltration processes for the treatment of leachate from the largest landfill in Hanoi,Vietnam:Impact of operating conditions[J]. Separation and Purification Technology,2021,255:117677.
|
| [20] |
BAEK G,KIM J,LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresource Technology,2014,166:596-601.
|
| [21] |
WANG M W,ZHAO Z Q,NIU J F,et al. Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion[J]. ACS Sustainable Chemistry& Engineering,2018,7(1):697-708.
|
| [22] |
OMWENE P I,KOBYA M,CAN O T. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes[J]. Ecological Engineering,2018,123:65-73.
|
| [23] |
YANG Y H,LI Y W,MAO R,et al. Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation:efficiency and mechanism[J]. Separation and Purification Technology,2022,286:120439.
|
| [24] |
BIESINGER M C,PAYNE B P,GROSVENOR A P,et al. Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J]. Applied Surface Science,2011,257(7):2717-2730.
|
| [25] |
YAMASHITA T,HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied surface science,2008,254(8):2441-2449.
|
| [26] |
XIONG J Q,YU S C,HU Y S,et al. Applying a dynamic membrane filtration(DMF)process for domestic wastewater preconcentration:Organics recovery and bioenergy production potential analysis[J]. Science of the Total Environment,2019,680:35-43.
|
| [27] |
ABDELRAHMAN A M,KOSAR S,GULHAN H,et al. Impact of primary treatment methods on sludge characteristics and digestibility,and wastewater treatment plant-wide economics[J]. Water Research,2023,235:119920.
|
| [28] |
KIM J,KIM K,YE H,et al. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environmental science& technology,2011,45(2):576-581.
|
| [29] |
KONG Z,LI L,WU J,et al. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor(AnMBR)at ambient temperature[J]. Bioresource Technology,2021,339:125551.
|