| Citation: | BIAN Haobo, CHEN Jian, YANG Ruijie, ZHOU Rui, ZHANG Tao, HUANG Guoxin. A method for spatial correlations between groundwater vulnerabilities and pollution sources based on machine learning and cluster analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 112-120. doi: 10.13205/j.hjgc.202512013 |
| [1] |
HE Z D,YE S,YANG H,et al. Evolution of groundwater quality in Jinding Industrial Park of Zhuhai city and its implications for water pollution control[J]. Environmental Monitoring in China,2024,40(2):63-73. 何志东,叶珊,杨虹,等. 珠海金鼎工业园地下水水质演变及其对水污染防控的提示[J]. 中国环境监测,2024,40(2):63-73.
|
| [2] |
MENG X S,WU M M,CHEN H H,et al. Analysis of typical pollutants properties and control measures of groundwater in representative iron& steel complexes[J]. Environmental Engineering,2019,37(12):90-97. 孟祥帅,吴萌萌,陈鸿汉,等. 我国典型钢铁企业地下水污染特征及防治对策分析[J]. 环境工程,2019,37(12):90-97.
|
| [3] |
LIU Z W,FAN S K,ZHANG M. Environmental risk analysis of soils and ground water in a typical Pb-Zn mine[J]. Nonferrous Metals(Extractive Metallurgy),2023(1):88-91. 刘紫薇,范书凯,张萌. 典型铅锌矿山周边土壤和地下水环境风险分析[J]. 有色金属(冶炼部分),2023(1):88-91.
|
| [4] |
CHEN Y D,LI Y Y,YE Z,et al. Groundwater vulnerability assessment in alluvial-proluvial fan area based on the improved DRASTIC model[J]. Environmental Science& Technology,2021,44(12):194-202. 陈钰頔,李妍颖,叶忠,等. 基于改进 DRASTIC 模型的冲洪积扇地下水脆弱性评价[J]. 环境科学与技术,2021,44(12):194-202.
|
| [5] |
CAI X H,KANG C X. Hydrochemical characteristics and water quality evaluation of groundwater in lower reaches of the Qiantang River[J]. Yangtze River,2023,54(6):27-33. 蔡小虎,康丛轩. 钱塘江下游滨江地区地下水水化学特征与水质评价[J]. 人民长江,2023,54(6):27-33.
|
| [6] |
ZHANG H,DU X Y,GAO F,et al. Groundwater pollution source identification by combination of PMF model and stable isotope technology[J]. Environmental Science,2022,43(8):4054-4063. 张涵,杜昕宇,高菲,等. 联合PMF模型与稳定同位素的地下水污染溯源[J]. 环境科学,2022,43(8):4054-4063.
|
| [7] |
HOU Y H,DOU X Y,BAO S L,et al. Assessment of groundwater contamination risk based on improved DRASTIC model[J]. Acta Scientiae Circumstantiae,2024,44(2):227-236. 侯宇徽,窦筱艳,保善磊,等. 基于DRASTIC模型优化的地下水污染风险评价研究[J]. 环境科学学报,2024,44(2):227-236.
|
| [8] |
XIAO R,CAO W,LIU Y,et al. The impacts of landscape patterns spatio-temporal changes on land surface temperature from a multi-scale perspective:a case study of the Yangtze River Delta[J]. Science of the Total Environment,2022,821:153381.
|
| [9] |
LIU K,CAI H S,ZHANG X L,et al. Spatial correlation and influencing factors of soil selenium and heavy metal content in Yuanzhou district[J]. Southwest China Journal of Agricultural Sciences,2023,36(7):1492-1503. 刘珂,蔡海生,张学玲,等. 袁州区土壤硒与重金属含量空间关联及其影响因素分析[J]. 西南农业学报,2023,36(7):1492-1503.
|
| [10] |
LYU S S,LI W,SU W C,et al. Ecological space zoning based on synergies and trade-offs of mountain,water,forest,farmland,lake and grassland[J]. Journal of Irrigation and Drainage,2024,43(9):88-94. 吕思思,李威,苏维词,等. 基于山水林田湖草协同/权衡的生态管控分区研究[J]. 灌溉排水学报,2024,43(9):88-94.
|
| [11] |
MENDIETA-MENDOZA A,HANSON R T,RENTERIA-VILLALOBOS M. Potential adverse impacts on vulnerability and availability of groundwater from climate-change and land use[J]. Journal of Hydrology,2021,594:125978.
|
| [12] |
VOUTCHKOVA D,SCHULLEHNER J,RASMUSSEN P,et al. A high-resolution nitrate vulnerability assessment of sandy aquifers(DRASTIC-N)[J]. Journal of Environmental Management,2021,277:111330.
|
| [13] |
ELZAIN H E,CHUNG S Y,SENAPATHI V,et al. Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination[J]. Ecotoxicology and Environmental Safety,2022,229:113061.
|
| [14] |
TORKASHVAND M,NESHAT A,JAVADI S,et al. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method[J]. Journal of Hydrology,2021,598:126446.
|
| [15] |
IJLIL S,ESSAHLAOUI A,MOHAJANE M,et al. Machine learning algorithms for modeling and mapping of groundwater pollution risk:a study to reach water security and sustainable development(SDG)goals in a Mediterranean aquifer system[J]. Remote Sensing,2022,14(10):2379.
|
| [16] |
DONG Y,ZHOU W,WANG X,et al. A new assessment method for the vulnerability of confined water:W-F&PNN method[J]. Journal of Hydrology,2020,590:125217.
|
| [17] |
ZHANG T,WANG X H,BI E P,et al. Groundwater vulnerability evaluation and risk control in a certain area in northern Guangdong province based on a BP neural network[J]. Environmental Engineering,2023,41(12):270-277. 张涛,王夏晖,毕二平,等. 基于BP神经网络的粤北某地区地下水脆弱性评价及其风险管控[J]. 环境工程,2023,41(12):270-277.
|
| [18] |
CHU S,CHENG L,CHENG J,et al. Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery[J]. Acta Oceanologica Sinica,2023,42(5):154-165.
|
| [19] |
YANG J,HU Y,ZHANG K,WU Y. An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape[J]. Soft Computing,2021,25:1751-1776.
|
| [20] |
HE Y,WANG H,WANG H,et al. Meteorology and topographic influences on nocturnal ozone increase during the summertime over Shaoguan,China[J]. Atmospheric Environment,2021,256:118459.
|
| [21] |
WANG X,ZENG X,LIU C,et al. Heavy metal contaminations in soil-rice system:source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province,China[J]. Environmental Monitoring and Assessment,2016,188(8):460.
|
| [22] |
CHEN X C. Exploring the construction of an evaluation system for the effectiveness of ecological restoration in mines in Shaoguan City[J]. World Nonferrous Metals,2024(16):130-132. 陈贤超. 探讨韶关市矿山生态修复成效评估体系构建[J]. 世界有色金属,2024(16):130-132.
|
| [23] |
Shaoguan Municipal Bureau of Statistics,Survey Office of The National Bureau of Statistics in Guangzhou. Statistical Communiqué of Shaoguan on the 2023 National Economic and Social Development[EB/OL].(2024-04-15)[ 2025-11-12]. https://www.sg.gov.cn/zw/sjfb/tjgb/content/post_2622025.html. 韶关市统计局,国家统计局广州调查队. 2023年韶关市国民经济和社会发展统计公报[EB/OL].(2024-04-15)[ 2025-11-12]. https://www.sg.gov.cn/zw/sjfb/tjgb/content/post_2622025.html.
|
| [24] |
ALLER L. DRASTIC:a standardized system for evaluating ground water pollution potential using hydrogeologic settings[Z]. Washington D C:United States Environmental Protection Agency,1985:99-102.
|
| [25] |
YANG J,TANG Z,JIAO T,et al. Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability:a case study from Jianghan plain,China[J]. Environmental Earth Sciences,2017,76(12):426.
|
| [26] |
WANG J N,WANG Y Y,HE S L,et al. Optimized BP neural network model based on improved genetic algorithm for soil moisture prediction[J]. Computer Systems& Applications,2022,31(2):273-278. 王佳楠,王玉莹,何淑林,等. 基于改进遗传算法优化BP神经网络的土壤湿度预测模型[J]. 计算机系统应用,2022,31(2):273-278.
|
| [27] |
SHI Y,REN C,YAN Z,et al. High spatial-temporal resolution estimation of ground-based global navigation satellite system interferometric reflectometry(GNSS-IR)soil moisture using the genetic algorithm back propagation(GA-BP)neural network[J]. ISPRS International Journal of Geo-Information,2021,10(9):623.
|
| [28] |
DENG Y,ZHOU X,SHEN J,et al. New methods based on back propagation(BP)and radial basis function(RBF)artificial neural networks(ANNs)for predicting the occurrence of haloketones in tap water[J]. Science of the Total Environment,2021,772:145534.
|
| [29] |
PYO J C,HONG S M,KWON Y S,et al. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil[J]. Science of the Total Environment,2020,741:140162.
|
| [30] |
YANG C,SUN J Y. Evaluation and spatial evolution characteristics of high-quality economic development of Dongting Lake eco-economic zone[J]. Journal of Central South University of Forestry& Technology(Social Sciences),2024,18(3):36-47. 杨灿,孙靖怡. 洞庭湖生态经济区经济高质量发展评估与空间演变特征[J]. 中南林业科技大学学报(社会科学版),2024,18(3):36-47.
|
| [31] |
HUANG G,WANG X,CHEN D,et al. A hybrid data-driven framework for diagnosing contributing factors for soil heavy metal contaminations using machine learning and spatial clustering analysis[J]. Journal of Hazardous Materials,2022,437:129324.
|
| [32] |
WU S,ZHOU S,BAO H,et al. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil[J]. Journal of Hazardous Materials,2019,364:108-116.
|
| [33] |
LI Y,ZHANG N,ZHANG Y N,et al. A novel salp swarm algorithm-neural network model for predicting weak singular integrals of boundary elements[J]. Journal of Shandong University(Engineering Science),2023,53(6):8-15. 李源,张妮,张艳娜,等. 用于预测边界元弱奇异积分的新型樽海鞘-神经网络模型[J]. 山东大学学报(工学版),2023,53(6):8-15.
|
| [34] |
WANG Z,ZHANG J,WANG J,et al. A back propagation neural network based optimizing model of space-based large mirror structure[J]. Optik,2019,179:780-786.
|
| [35] |
QIAN W,WANG Y F,WANG C,et al. Joint estimation of SoH-SoC for lithium battery based on BP neural network and H infinity filter[J]. Chinese Journal of Scientific Instrument,2024,45(6):307-319. 钱伟,王亚丰,王晨,等. 基于 BP 神经网络与 H∞滤波的锂电池 SoH-SoC 联合估计研究[J]. 仪器仪表学报,2024,45(6):307-319.
|
| [36] |
WEI S A,CHEN Y P,LI J,et al. Path planning of complex surface inspection based on improved adaptive genetic algorithm[J]. Tool Engineering,2024,58(11):153-160. 韦思安,陈岳坪,李杰,等. 基于改进自适应遗传算法的复杂曲面检测路径规划[J]. 工具技术,2024,58(11):153-160.
|
| [37] |
SHU H,XIONG P. Reallocation planning of urban industrial land for structure optimization and emission reduction:a practical analysis of urban agglomeration in China's Yangtze River Delta[J]. Land Use Policy,2019,81:604-623.
|
| [38] |
AMARE A. Corporate environmental responsibility in Ethiopia:a case study of the Akaki River Basin[J]. Ecosystem Health and Sustainability,2019,5(1):57-66.
|