Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
ZHANG Jiali, WU Rongwei. Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016
Citation: ZHANG Jiali, WU Rongwei. Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016

Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin

doi: 10.13205/j.hjgc.202512016
  • Received Date: 2024-08-13
  • Accepted Date: 2024-10-13
  • Rev Recd Date: 2024-09-20
  • Available Online: 2026-01-09
  • The Yellow River Basin is an important ecological barrier and energy base in China. Promoting carbon emissions reduction in the Yellow River Basin is of great significance for China to achieve the Dual Carbon Goals. Utilizing energy consumption, population distribution data, and nighttime light data spanning 2000 to 2022 in the Yellow River Basin, this study estimated CO2 emissions for prefecture-level administrative regions (referred to as cities). The spatiotemporal pattern of per capita CO2 emissions was analyzed using exploratory spatiotemporal data analysis (ESTDA) methods. Additionally, an extended STIRPAT model and panel data regression techniques were employed to identify factors influencing per capita CO2 emissions in these cities. The findings indicate: 1) Per capita CO2 emissions in the Yellow River Basin exhibit a spatial pattern with higher emissions in the middle reaches, and lower emissions in the upstream and downstream regions. 2) From 2000 to 2022, the spatiotemporal dynamics of per capita CO2 emissions in cities of the Yellow River Basin generally remained stable with some local changes. The overall stability was reflected in the fact that, from 2000 to 2022, the spatiotemporal cohesion rate of per capita CO2 emissions was 81.5%, with the dominant proportion not experiencing a change in the associated patterns. Local dynamics were reflected in the shift in spatial association structures of per capita CO2 emissions in resource-based cities and some economically developed cities. Among the two types of spatiotemporal transitions, Type 1 (10.8%) > Type 2 (7.7%), indicating that some cities in the Yellow River Basin have experienced spatial association lock-in for per capita CO2 emissions. 3) The spatial panel regression results show that economic growth is positively correlated with per capita CO2 emissions in the Yellow River Basin. Urbanization level, population size, the share of the tertiary industry in GDP, the share of fixed asset investment in GDP, and the share of total import and export value in GDP are negatively correlated with per capita CO2 emissions. The relationship between the secondary industry’s value-added share in GDP and per capita CO2 emissions remains uncertain. Additionally, the widespread spatial interaction among cities in the Yellow River Basin and the significant spatial lag effect positively promoted per capita CO2 emissions. Therefore, when formulating low-carbon development strategies, regional differences and spatial interactions should be considered, and each province or region should develop targeted emission reduction policies based on its specific characteristics. The research findings provide decision-making references for deep cooperation and coordinated emission reduction across various regions of the Yellow River Basin, helping to promote ecological protection and high-quality development in the basin.
  • loading
  • [1]
    IPCC. Summary for Policymakers[M]//MASSON-DELMOTTE V,ZHAI P,PIRANI A,et al. Climate Change 2021:The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom; New York,NY,USA:Cambridge University Press,2021:3-32.
    [2]
    SUN Y. Impact of human activities on climate system:an interpretation of Chapter Ⅲ of WGⅠ report of IPCC AR6[J]. Transactions of Atmospheric Sciences,2021,44(5):654-657. 孙颖. 人类活动对气候系统的影响:解读 IPCC 第六次评估报告第一工作组报告第三章[J]. 大气科学学报,2021,44(5):654-657.
    [3]
    REN H Y,DU R L,XIE G L,et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering,2023,41(10):195-203. 任宏洋,杜若岚,谢贵林,等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程,2023,41(10):195-203.
    [4]
    LIU C M,QIAN X Y. Prediction of carbon emissions from energy consumption in China under the"dual carbon" goal[J]. Resources Science,2023,45(10):1931-1946. 刘春梅,钱啸吟.“双碳” 目标下中国能源消费碳排放量预测[J]. 资源科学,2023,45(10):1931-1946.
    [5]
    XIA S Y,YANG Y. Spatial and temporal differentiation of carbon balance and carbon compensation zoning in the Beijing-Tianjin-Hebei urban agglomeration based on main functional zones[J]. Acta Geographica Sinica,2022,77(3):679-696. 夏四友,杨宇. 基于主体功能区的京津冀城市群碳收支时空分异与碳补偿分区[J]. 地理学报,2022,77(3):679-696.
    [6]
    CHEN Z M,WU S M,MA W B,et al. Driving forces of carbon dioxide emission for China's cities:empirical analysis based on extended STIRPAT Model[J]. China Population,Resources and Environment,2018,28(10):45-54. 陈占明,吴施美,马文博,等. 中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的 STIRPAT 模型[J]. 中国人口・资源与环境,2018,28(10):45-54.
    [7]
    KONG X Y,LI Q. Research progress of spatial estimation of energy carbon emissions[J]. Science of Surveying and Mapping,2022,47(8):146-156. 孔潇扬,李琦. 能源碳排放的空间估算研究进展[J]. 测绘科学,2022,47(8):146-156.
    [8]
    SU Y X,CHEN X Z,YE Y Y,et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geographica Sinica,2013,68(11):1513-1526. 苏泳娴,陈修治,叶玉瑶,等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526.
    [9]
    CHEN J D,GAO M,CHENG S L,et al. County-level CO2 emissions and sequestration in China during 1997-2017[J]. Scientific Data,2020,7(1):1-14.
    [10]
    GHOSH T,ELVIDGE C D,SUTTON P C,et al. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery[J]. Energies,2010,3(12):1895-1913.
    [11]
    OU J,LIU X,LI X,et al. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion co2 emissions:a comparison with DMSP-OLS nighttime light data[J]. PLoS One,2015,10(9):e0138310.
    [12]
    GUO B,XIE T T,ZHANG W C,et al. Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013-2019[J]. Science of the Total Environment,2023,905:166312.
    [13]
    DU H B,WEI W,ZHANG X Y,et al. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J]. Geographical Research,2021,40(7):2051-2065. 杜海波,魏伟,张学渊,等. 黄河流域能源消费碳排放时空格局演变及影响因素:基于 DMSP/OLS 与 NPP/VIIRS 夜间灯光数据[J]. 地理研究,2021,40(7):2051-2065.
    [14]
    WU Y,SHI K,CHEN Z,et al. Developing improved time-series DMSP-OLS-Like data(1992-2019)in China by integrating DMSP-OLS and SNPP-VIIRS[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14.
    [15]
    CHENG Y,WANG Z,YE X,et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China[J]. Journal of Geographical Sciences,2014,24(6):1109-1124.
    [16]
    ELVIDGE C D,ZISKIN D,BAUGH K E,et al. A fifteen-year record of global natural gas flaring derived from satellite data[J]. Energies,2009,2(3):595-622.
    [17]
    CHEN H,ZHANG X,WU R,et al. Revisiting the environmental Kuznets curve for city-level CO2 emissions:based on corrected NPP-VIIRS nighttime light data in China[J]. Journal of Cleaner Production,2020,268:121575.
    [18]
    YE X,REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science,2013,50(1):315-339.
    [19]
    ANSELIN L. Local indicators of spatial association—LISA[J]. Geographical Analysis,1995,27(2):93-115.
    [20]
    REY S J,MURRAY A T,ANSELIN L. Visualizing regional income distribution dynamics[J]. Letters in Spatial and Resource Sciences,2011,4(1):81-90.
    [21]
    YORK R,ROSA E A,DIETZ T. STIRPAT,IPAT and ImPACT:analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365.
    [22]
    WANG S J,XIE Z H,WANG Z H. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica,2021,76(12):3103-3118. 王少剑,谢紫寒,王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报,2021,76(12):3103-3118.
    [23]
    CHEN J Q,LI X S,GENG Y W,et al. Mechanism analysis and empirical research on urbanization and carbon emissions in China:based on the perspective of economic development,population transfer,and urban expansion[J]. Journal of Natural Resources,2024,39(6):1399-1417. 陈姜全,李效顺,耿艺伟,等. 中国城镇化与碳排放机制分析及实证研究:基于经济发展、人口转移和城镇扩张视角[J]. 自然资源学报,2024,39(6):1399-1417.
    [24]
    LIU J,GE X,ZHAO Z Y. Research on spatio-temporal evolution of carbon emissions in North China urban agglomeration and its influencing factors[J]. Environmental Engineering,2023,41(10):204-212. 刘杰,葛潇,赵振宇. 华北城市群碳排放时空演变格局及影响因素研究[J]. 环境工程,2023,41(10):204-212.
    [25]
    WEN H X,CHEN Z,YANG Q,et al. Driving forces and mitigating strategies of CO2 emissions in China:a decomposition analysis based on 38 industrial sub-sectors[J]. Energy,2022,245:123262.
    [26]
    MO M,HAN S L. Does foreign trade contribute to carbon emissions? Based on the empirical test of ASEAN countries[J]. Journal of Guangxi University(Philosophy and Social Science),2021,43(4):122-128. 莫敏,韩松霖. 对外贸易会加剧碳排放吗?基于东盟国家的实证检验[J]. 广西大学学报(哲学社会科学版),2021,43(4):122-128.
    [27]
    ZHANG H. Strategic interaction of regional environmental regulation:an explanation on the universality of incomplete enforcement of environmental regulation[J]. China Industrial Economics,2016(7):74-90. 张华. 地区间环境规制的策略互动研究:对环境规制非完全执行普遍性的解释[J]. 中国工业经济,2016(7):74-90.
    [28]
    ZHANG H M,YUAN P F,ZHU Z S. The decoupling effect and emission reduction path of carbon emissions in the Yellow River Basin[J]. Resources Science,2022,44(1):59-69. 张华明,元鹏飞,朱治双. 黄河流域碳排放脱钩效应及减排路径[J]. 资源科学,2022,44(1):59-69.
    [29]
    MIAO C H,HU Z Q,GENG F J,et al. Characteristics of economic evolution and the influencing factors of resource-dependent cities in China:the role of path dependence,vulnerability and path creation[J]. Geographical Research,2018,37(7):1268-1281. 苗长虹,胡志强,耿凤娟,等. 中国资源型城市经济演化特征与影响因素:路径依赖、脆弱性和路径创造的作用[J]. 地理研究,2018,37(7):1268-1281.
    [30]
    WANG L C,YANG T T. Types and spatiotemporal change characteristics of population shrinking county seats in the Yellow River Basin[J]. Resources Science,2024,46(2):336-351. 王录仓,杨婷婷. 黄河流域人口收缩县城类型及其时空演化特征[J]. 资源科学,2024,46(2):336-351.
    [31]
    WU R W,WANG Y X,WANG H Y,et al. Spatio-temporal patterns and determinants of highly skilled talents in China,2010-2020[J]. World Regional Studies,2024,33(5):987-999. 武荣伟,王远鑫,王堠崟,等. 2010—2020 年中国县域高技能人才时空格局及其影响因素[J]. 世界地理研究,2024,33(5):987-999.
    [32]
    HAN S S,MIAO C H,LI Y C. Effects of urban polycentric spatial structure on carbon emissions in the Yellow River Basin[J]. Geographical Research,2023,42(4):936-954. 韩帅帅,苗长虹,李奕灿. 黄河流域城市多中心空间结构对碳排放的影响研究[J]. 地理研究,2023,42(4):936-954.
    [33]
    ZHANG K Y,ZHANG Y. The evolution of regional economic disparity in the Yellow River Basin at different spatial scales[J]. Economic Geography,2020,40(7):1-11. 张可云,张颖. 不同空间尺度下黄河流域区域经济差异的演变[J]. 经济地理,2020,40(7):1-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (692) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return