| Citation: | SUN Wen, YAN Weidong, HUANG Kailiang, SONG Jiasen. Prediction of residential indoor PM2.5 concentration and model optimization based on Informer model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 161-168. doi: 10.13205/j.hjgc.202512018 |
| [1] |
HU W,DOWNWARD G S,REISS B,et al. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer[J]. Environmental Science and Technology,2014,48(15):8456-8464.
|
| [2] |
SUNDELL J. On the history of indoor air quality and health[J]. Indoor Air,2004,14(S7):51-58.
|
| [3] |
MA Y. Research on air quality prediction based on deep learning[D]. Ji'nan:Shandong University,2023. 马园. 基于深度学习的空气质量预测研究[D]. 济南:山东大学,2023.
|
| [4] |
ZHU Y M,XU A L,SUN Qiang. New progress in air quality forecasting methods based on deep learning[J]. Environmental Monitoring in China,2020,36(3):10-18. 朱晏民,徐爱兰,孙强. 基于深度学习的空气质量预报方法新进展[J]. 中国环境监测,2020,36(3):10-18.
|
| [5] |
DAI X L. Research on data mining and intelligent prediction of residential indoor air quality based on internet of things platform[D]. Tianjin:Tianjin University,2021. 戴希磊. 基于物联网平台的住宅室内空气质量数据挖掘及其智能预测研究[D]. 天津:天津大学,2021.
|
| [6] |
ELBAYOUMI M,RAMLI N A,YUSOF N F F M. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5-10 and PM2.5 concentrations in naturally ventilated schools[J]. Atmospheric Pollution Research,2015,6(6):1013-1023.
|
| [7] |
LOY-BENITEZ J,VILELA P,LI Q,et al. Sequential prediction of quantitative health risk assessment for the fine particulate matter in an underground facility using deep recurrent neural networks[J]. Ecotoxicology and Environmental Safety,2019,169:316-324.
|
| [8] |
ZHANG N,BAI Z X,ZHANG H L,et al. Deployment,optimization and data prediction of Internet of Things for indoor air quality[J]. Sci China. Inf Sci,2022,52(1):160-175. 张楠,白子轩,张泓亮,等. 室内空气质量物联网部署、优化和数据预测[J]. 中国科学:信息科学,2022,52(1):160-175.
|
| [9] |
DONG H,SUN L,OUYANG F. PM2.5 concentration prediction based on Informer[J]. Environmental Engineering,2022,40(6):48-54. 董浩,孙琳,欧阳峰. 基于Informer的PM2.5浓度预测[J]. 环境工程,2022,40(6):48-54.
|
| [10] |
HUANG K L,SUN W,FENG G H,et al. Indoor air quality analysis of 8 mechanically ventilated residential buildings in northeast China based on long-term monitoring[J]. Sustainable Cities and Society,2020,54:101947.
|
| [11] |
ZHOU H Y,LI J X,ZHANG S H,et al. Expanding the prediction capacity in long sequence time-series forecasting[J]. Artificial Intelligence,2023,318:103886.
|
| [12] |
CLEVERT D A,UNTERTHINER T,HOCHREITER S. Fast and accurate deep network learning by exponential linear units(ELUs)[EB/OL].(2015-11-24)[ 2025-12-12]. arXiv:1511.07289[cs.LG].
|
| [13] |
KINGMA D P,BA J. Adam:A method for stochastic optimization[EB/OL].(2014-12-22)[ 2025-12-12]. arXiv:1412.6980[cs.LG].
|
| [14] |
REN Y,WANG S Y,XIA B S. Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction[J]. Atmospheric Pollution Research,2023,14(4):101703.
|
| [15] |
HUANG K L,SONG J S,FENG G H,et al. Indoor air quality analysis of residential buildings in northeast China based on field measurements and longtime monitoring[J]. Building and Environment,2018,144:171-183.
|
| [16] |
State Administration for Market Regulation,Standardization Administration of the People's Republic of China. GB/T 18883-2022:Indoor air quality standard[S]. Beijing:China Standards Press,2022. 国家市场监督管理总局,国家标准化管理委员会. GB/T 18883—2022:室内空气质量标准[S]. 北京:中国标准出版社,2022.
|