Citation: | GUO Zirui, CHI Riguang. OPTIMIZATION OF THE PHYSICS PRESSURE UNDER ADD MODE IN PHA PRODUCTION WITH CFD SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 38-44. doi: DOI:10.13205/j.hjgc.202207006 |
[1] |
王攀,邱银权,陈锡腾,等.以餐厨垃圾水解酸化液为碳源合成PHA研究[J].环境工程, 2018, 36(6):145-149.
|
[2] |
SABAPATHY P C, DEVARAJ S,MEIXNER K, et al. Recent developments in Polyhydroxyalkanoates (PHAs) production:a review[J]. Bioresource Technology, 2020, 306:123132.
|
[3] |
KUMAR M, RATHOUR R, SINGH R, et al. Bacterial polyhydroxyalkanoates:opportunities, challenges, and prospects[J]. Journal of Cleaner Production, 2020, 263:121500.
|
[4] |
袁恺,周卫强,彭超,等.微生物发酵法生产聚羟基脂肪酸酯的研究进展[J].生物工程学报, 2021, 37(2):384-394.
|
[5] |
PEREZ-ZABALETA M, ATASOY M, KHATAMI K, et al. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures[J]. Bioresource Technology, 2021, 323:124604.
|
[6] |
TU W M, ZHANG D D, WANG H. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures:the link between phosphorus and PHA yields[J]. Waste Management, 2019, 96:149-157.
|
[7] |
FANG F, XU R Z, HUANG Y Q, et al. Exploring the feasibility of nitrous oxide reduction and polyhydroxyalkanoates production simultaneously by mixed microbial cultures[J]. Bioresource Technology, 2021,342:126012.
|
[8] |
王攀,邱银权,陈锡腾,等.利用餐厨垃圾水解酸化液合成PHA:耐盐菌的筛选及其产PHA特性[J].环境工程, 2018, 36(4):78-82
,116.
|
[9] |
JAYAKRISHNAN U, DEKA D, DAS G. Waste as feedstock for polyhydroxyalkanoate production from activated sludge:implications of aerobic dynamic feeding and acidogenic fermentation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105-112.
|
[10] |
FAUZI A H M, CHUA A S M, YOON L W, et al. Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol[J]. Process Safety and Environmental Protection, 2019, 122:200-208.
|
[11] |
INOUE D, FUKUYAMA A, REN Y, et al. Optimization of aerobic dynamic discharge process for very rapid enrichment of polyhydroxyalkanoates-accumulating bacteria from activated sludge[J]. Bioresource Technology, 2021, 336:125314.
|
[12] |
HAO J X, WANG H, WANG X J. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate[J]. Applied Microbiology and Biotechnology, 2018, 102(7):3133-3143.
|
[13] |
OLIVEIRA C S S, SILVA C E, GARVALHO G, et al. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks:feast and famine regime and uncoupled carbon and nitrogen availabilities[J]. New Biotechnology, 2017, 37:69-79.
|
[14] |
郭子瑞,陈志强,池日光.基于GA-BP神经网络的餐厨垃圾合成PHA工艺产量预测[J].环境工程, 2021:1-9.
|
[15] |
ZENG S W, SONG F Z, LU P L, et al. Improving PHA production in a SBR of coupling PHA-storing microorganism enrichment and PHA accumulation by feed-on-demand control[J]. AMB Express, 2018, 8(1):97.
|
[16] |
VALENTINO F, LORINI L, GOTTARDO M, et al. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates[J]. Journal of Biotechnology, 2020, 323:54-61.
|
[17] |
王佳君,陆洪宇,陈志强,等.接种量对餐厨垃圾中温厌氧产甲烷潜能的影响[J].环境工程学报, 2017, 11(1):541-545.
|
[18] |
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
|
[19] |
LEAL C, del RÍO A V, MESQUITA D, et al. Sludge volume index and suspended solids estimation of mature aerobic granular sludge by quantitative image analysis and chemometric tools[J]. Separation and Purification Technology, 2020, 234:116049.
|
[20] |
FAN N S, WANG R F, QI R, et al. Control strategy for filamentous sludge bulking:bench-scale test and full-scale application[J]. Chemosphere, 2018, 210:709-716.
|
[21] |
GUO Z R, CHEN Z Q, WEN Q X, et al. Strategy to reduce the acclimation period for enrichment of PHA accumulating cultures[J]. Desalination and Water Treatment, 2016,57(60):29286-29294.
|
[22] |
WEN Q X, CHEN Z Q, WANG C Y, et al. Bulking sludge for PHA production:energy saving and comparative storage capacity with well-settled sludge[J]. Journal of Environmental Sciences, 2012, 24:1744-1752.
|
[23] |
MONTEIRO E, ISMAIL T M, RAMOS A, et al. Assessment of the miscanthus gasification in a semi-industrial gasifier using a CFD model[J]. Applied Thermal Engineering, 2017, 123:448-457.
|
[24] |
ZABURKO J, GŁOWIENKA R. Modeling of the aeration system of a sequencing batch reactor[J]. Journal of Ecological Engineering, 2020, 21(7).
|
[25] |
AL-QADASI H, OZKAN G M. CFD analysis of biomass steam gasification in fluidized bed gasifier:a parametric study by the assessment of drying stage[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2021,43(19):2369-2390.
|
[26] |
张鹏,吴志超.污泥的粘度与浓度,温度三者关系式的实验推导[J].环境污染治理技术与设备, 2006, 7(3):72-74.
|
[27] |
曹秀芹,袁海光,赵振东,等.黄原胶溶液模拟消化污泥流动性能分析[J].农业工程学报, 2017, 33(15):260-265.
|
[28] |
ZOU J T, TAO Y Q, LI J, et al. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater[J]. Bioresource Technology, 2018, 247:776-783.
|
[29] |
郭子瑞.基于动态间歇排水瞬时补料的活性污泥合成PHA新工艺研究[D].哈尔滨:哈尔滨工业大学, 2016:55-72.
|
[30] |
VJAYAN T, VADIVELU V. Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules[J]. Bioresource Technology, 2017, 245:970-976.
|
[31] |
ZHANG B, LI W, ZHANG Z Q, et al. Microalgal-bacterial consortia:from interspecies interactions to biotechnological applications[J]. Renewable and Sustainable Energy Reviews, 2020, 118:109563.
|