Citation: | LI Sida, WANG Xinyan, ZHANG Fangfei, SHAO Dongdong, CUI Baoshan, CAO Bo, ZHANG Yong. UNMANNED AERIAL VEHICLE (UAV) REMOTE SENSING TECHNOLOGY IN WETLAND HYDRODYNAMIC RESEARCH: PROGRESS, PROSPECT, AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 93-104. doi: 10.13205/j.hjgc.202301012 |
[1] |
BRIDGEWATER P, KIM R E. The ramsar convention on wetlands at 50[J]. Nature Ecology & Evolution, 2021, 5(3):268-270.
|
[2] |
章光新, 武瑶, 吴燕锋, 等. 湿地生态水文学研究综述[J]. 水科学进展, 2018, 29(5):737-749.
|
[3] |
DAVIDSON N C. How much wetland has the world lost? Long-term and recent trends in global wetland area[J]. Marine and Freshwater Research, 2014, 65(10):934-941.
|
[4] |
MAO D H, YANG H, WANG Z M, et al. Reverse the hidden loss of China's wetlands[J]. Science, 2022, 376(6597):1061.
|
[5] |
TEAL J M, WEISHAR L. Ecological engineering, adaptive management, and restoration management in Delaware Bay salt marsh restoration[J]. Ecological Engineering, 2005, 25(3):304-314.
|
[6] |
陈俐交, 宗勇军, 邵秘华, 等. 双台子河口湿地植被修复生境健康评价方法研究[J]. 环境工程, 2017, 35(2):158-162.
|
[7] |
浙江省林业局. 国家林草局持续加强湿地保护和修复[EB/OL]. http://lyj.zj.gov.cn/art/2022/5/30/art_1276367_59031998.html. 2022-05-30.
|
[8] |
国家林业和草原局政府网. 湿地保护修复[EB/OL]. https://www.forestry.gov.cn/main/6193/20220302/153916535797497.html. 2022-03-02.
|
[9] |
HE Q. Conservation:‘No net loss’ of wetland quantity and quality[J]. Current Biology, 2019, 29(20):R1070-R1072.
|
[10] |
贺怡, 王雪宏, 杨继松, 等. 湿地水文连通影响因素及生态效应研究进展[J]. 生态科学, 2021, 40(6):218-224.
|
[11] |
王新艳, 闫家国, 白军红, 等. 黄河口滨海湿地水文连通对大型底栖动物生物连通的影响[J]. 自然资源学报, 2019, 34(12):2544-2553.
|
[12] |
GAO W, SHAO D, WANG Z B, et al. Combined effects of unsteady river discharges and wave conditions on river mouth bar morphodynamics[J]. Geophysical Research Letters, 2018, 45(23):12903-12911.
|
[13] |
傅国斌, 李克让. 全球变暖与湿地生态系统的研究进展[J]. 地理研究, 2001, 20(1):120-128.
|
[14] |
孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19(5):385-391.
|
[15] |
林磊, 刘东艳, 刘哲, 等. 围填海对海洋水动力与生态环境的影响[J]. 海洋学报, 2016, 38(8):1-11.
|
[16] |
田艺苑, 杨薇, 刘强, 等. 白洋淀流域水文连通对浮游植物群落的影响[J]. 农业环境科学学报, 2021, 40(7):1538-1547.
|
[17] |
董李勤, 章光新. 嫩江流域沼泽湿地景观变化及其水文驱动因素分析[J]. 水科学进展, 2013, 24(2):177-183.
|
[18] |
符国伟, 宋艳伟, 袁坤, 等. 博鳌珊瑚岛围填导致邻近海岸侵蚀、淤积演变的研究[J]. 海洋环境科学, 2022, 41(2):174-179.
|
[19] |
LI Y, QIU J, LI Z, et al. Assessment of blue carbon storage loss in coastal wetlands under rapid reclamation[J]. Sustainability, 2018, 10(8).
|
[20] |
SCHOOLMASTER Jr D R, STAGG C L, CREAMER C, et al. A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a louisiana salt marsh in the Mississippi River Deltaic Plain[J]. Journal of Geophysical Research-Biogeosciences, 2022, 127(6).
|
[21] |
段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):463-469.
|
[22] |
刘元波, 吴桂平, 赵晓松, 等. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5):488-496.
|
[23] |
TAURO F, PISCOPIA R, GRIMALDI S. Streamflow observations from cameras:Large-scale particle image velocimetry or particle tracking velocimetry?[J]. Water Resources Research, 2017, 53(12):10374-10394.
|
[24] |
BOEGH E, THORSEN M, BUTTS M B, et al. Incorporating remote sensing data in physically based distributed agro-hydrological modelling[J]. Journal of Hydrology, 2004, 287(1/2/3/4):279-299.
|
[25] |
辛沛, 金光球, 李凌, 等. 崇明东滩盐沼潮沟水动力过程观测与分析[J]. 水科学进展, 2009, 20(1):74-79.
|
[26] |
龚然, 徐进, 徐力刚, 等. 基于efdc城市景观湖泊水动力模拟研究[J]. 环境工程, 2015, 33(4):58-62
, 91.
|
[27] |
PEARCE S, LJUBICIC R, PENA-HARO S, et al. An evaluation of image velocimetry techniques under low flow conditions and high seeding densities using unmanned aerial systems[J]. Remote Sensing, 2020, 12(2):232.
|
[28] |
LEWIS Q W, LINDROTH E M, RHOADS B L. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging[J]. Journal of Hydrology, 2018, 560:230-246.
|
[29] |
ZHAN P F, SONG C Q, LUO S X, et al. Lake level reconstructed from DEM-based virtual station:comparison of multisource DEMs with laser altimetry and UAV-LiDAR measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[30] |
ALSDORF D E, RODRÍGUEZ E, LETTENMAIER D P. Measuring surface water from space[J]. Reviews of Geophysics, 2007, 45(2).
|
[31] |
张舒昱, 李兆富, 徐锋, 等. 基于多时相无人机遥感影像优化河口湿地景观分类[J]. 生态学杂志, 2020, 39(9):3174-3184.
|
[32] |
ELTNER A, ELIAS M, SARDEMANN H, et al. Automatic image-based water stage measurement for long-term observations in ungauged catchments[J]. Water Resources Research, 2018, 54(12):10362-10371.
|
[33] |
WANG J, YANG S T, LOU H Z, et al. Impact of lake water level decline on river evolution in Ebinur Lake basin (an ungauged terminal lake basin)[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102546.
|
[34] |
YANG S T, WANG P F, LOU H Z, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11):2361.
|
[35] |
BANDINI F, SUNDING T P, LINDE J, et al. Unmanned aerial system (UAS) observations of water surface elevation in a small stream:comparison of radar altimetry, LiDAR and photogrammetry techniques[J]. Remote Sensing of Environment, 2020, 237:111487.
|
[36] |
DETERT M. How to avoid and correct biased riverine surface image velocimetry[J]. Water Resources Research, 2021, 57(2).
|
[37] |
DAL SASSO S F, PIZARRO A, PEARCE S, et al. Increasing LSPIV performances by exploiting the seeding distribution index at different spatial scales[J]. Journal of Hydrology, 2021, 598:126438.
|
[38] |
ELTNER A, SARDEMANN H, GRUNDMANN J. Technical note:flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery[J]. Hydrology and Earth System Sciences, 2020, 24(3):1429-1445.
|
[39] |
ACHARYA B S, BHANDARI M, BANDINI F, et al. Unmanned aerial vehicles in hydrology and water management:applications, challenges, and perspectives[J]. Water Resources Research, 2021, 57(11).
|
[40] |
EMANUELE P, NIVES G, ANDREA C, et al. Bathymetric detection of fluvial environments through UASs and machine learning systems[J]. Remote Sensing, 2020, 12(24):24.
|
[41] |
BANDINI F, LUTHI B, PENA-HARO S, et al. A drone-borne method to jointly estimate discharge and manning's roughness of natural streams[J]. Water Resources Research, 2021, 57(2):22.
|
[42] |
BANDINI F, JAKOBSEN J, OLESEN D, et al. Measuring water level in rivers and lakes from lightweight unmanned aerial vehicles[J]. Journal of Hydrology, 2017, 548:237-250.
|
[43] |
唐军武, 陈戈, 陈卫标, 等. 海洋三维遥感与海洋剖面激光雷达[J]. 遥感学报, 2021, 25(1):460-500.
|
[44] |
杜建丽, 陈动, 张振鑫, 等. 建筑点云几何模型重建方法研究进展[J]. 遥感学报, 2019, 23(3):374-391.
|
[45] |
GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et al. Meeting the accuracy challenge in airborne bathymetry[R]:National Oceanic Atmospheric Administration/Nesdis Silver Spring MD, 2000.
|
[46] |
MANDLBURGER G, PFENNIGBAUER M, WIESER M, et al. Evaluation of a novel UAV-borne topo-bathymetric laser profiler[J]. Copernicus GmbH, 2016.
|
[47] |
HUANG Z C, YEH C Y, TSENG K H, et al. A UAV-RTK LiDAR system for wave and tide measurements in coastal zones[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(8):1557-1570.
|
[48] |
PINGEL T J, SAAVEDRA A, COBO L. Deriving land and water surface elevations in the northeastern Yucatán Peninsula using PPK GPS and UAV-based structure from motion[J]. Papers in Applied Geography, 2021, 7(3):294-315.
|
[49] |
RIDOLFI E, MANCIOLA P. Water level measurements from drones:a pilot case study at a dam site[J]. Water, 2018, 10(3):10.
|
[50] |
KRÖHNERT M, MEICHSNER R. Segmentation of environmental time lapse image sequences for the determination of shore lines captured by hand-held smartphone cameras[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-2/W4:1-8.
|
[51] |
WOODGET A S, CARBONNEAU P E, VISSER F, et al. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(1):47-64.
|
[52] |
PAI H, MALENDA H F, BRIGGS M A, et al. Potential for small unmanned aircraft systems applications for identifying groundwater-surface water exchange in a meandering river reach[J]. Geophysical Research Letters, 2017, 44(23):11868-11877.
|
[53] |
MOHAMAD N, KHANAN M F A, AHMAD A, et al. Evaluating water level changes at different tidal phases using UAV photogrammetry and gnss vertical data[J]. Sensors, 2019, 19(17):19.
|
[54] |
KOHV M, SEPP E, VAMMUS L. Assessing multitemporal water-level changes with UAV-based photogrammetry[J]. Photogrammetric Record, 2017, 32(160):424-442.
|
[55] |
GARCÍA-LÓPEZ S, RUIZ-ORTIZ V, BARBERO L, et al. Contribution of the UAS to the determination of the water budget in a coastal wetland:a case study in the natural park of the bay of Cádiz (sw spain)[J]. European Journal of Remote Sensing, 2018, 51(1):965-977.
|
[56] |
COOPER I, HOTCHKISS R H, WILLIAMS G P. Extending multi-beam sonar with structure from motion data of shorelines for complete pool bathymetry of reservoirs[J]. Remote Sensing, 2021, 13(1):30.
|
[57] |
BANDINI F, LOPEZ-TAMAYO A, MEREDIZ-ALONSO G, et al. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico[J]. Hydrogeology Journal, 2018, 26(7):2213-2228.
|
[58] |
BANDINI F, OLESEN D, JAKOBSEN J, et al. Technical note:bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle[J]. Hydrology and Earth System Sciences, 2018, 22(8):4165-4181.
|
[59] |
ALVAREZ L V, MORENO H A, SEGALES A R, et al. Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys[J]. Remote Sensing, 2018, 10(9):24.
|
[60] |
CHEN X, KONG W, CHEN T, et al. Fiber-laser-pumped green laser for photon-counting bathymetric LiDAR on UAV platform[C]//7th Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, CHN, 2020.
|
[61] |
KINZEL P J, LEGLEITER C J. SUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric LiDAR[J]. Remote Sensing, 2019, 11(19):19.
|
[62] |
MANDLBURGER G, PFENNIGBAUER M, RIEGL U, et al. Complementing airborne laser bathymetry with UAV-based LiDAR for capturing alluvial landscapes[C]//Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology ⅩⅦ part of the International Symposium on Remote Sensing, Toulouse, FRA, 2015.
|
[63] |
MANDLBURGER G, PFENNIGBAUER M, SCHWARZ R, et al. Concept and performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor[J]. Remote Sensing, 2020, 12(6):28.
|
[64] |
WANG D D, XING S, HE Y, et al. Evaluation of a new lightweight UAV-borne topo-bathymetric LiDAR for shallow water bathymetry and object detection[J]. Sensors, 2022, 22(4):20.
|
[65] |
AGRAFIOTIS P, SKARLATOS D, GEORGOPOULOS A, et al. Depthlearn:learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds[J]. Remote Sensing, 2019, 11(19):31.
|
[66] |
DIETRICH J T. Bathymetric structure-from-motion:extracting shallow stream bathymetry from multi-view stereo photogrammetry[J]. Earth Surface Processes and Landforms, 2017, 42(2):355-364.
|
[67] |
KASVI E, SALMELA J, LOTSARI E, et al. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers[J]. Geomorphology, 2019, 333:180-197.
|
[68] |
SLOCUM R K, PARRISH C E, SIMPSON C H. Combined geometric-radiometric and neural network approach to shallow bathymetric mapping with UAS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:351-363.
|
[69] |
CHIROL C, HAIGH I D, PONTEE N, et al. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from LiDAR[J]. Remote Sensing of Environment, 2018, 209:291-311.
|
[70] |
ZHU X, MENG L, ZHANG Y, et al. Tidal and meteorological influences on the growth of invasive spartina alterniflora:evidence from UAV remote sensing[J]. Remote Sensing, 2019, 11(10):1208.
|
[71] |
戴玮琦, 李欢, 龚政, 等. 无人机技术在潮滩地貌演变研究中的应用[J]. 水科学进展, 2019, 30(3):359-372.
|
[72] |
LEJOT J, DELACOURT C, PIÉGAY H, et al. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform[J]. Earth Surface Processes and Landforms, 2007, 32(11):1705-1725.
|
[73] |
GENTILE V, MR'OZ M, SPITONI M, et al. Bathymetric mapping of shallow rivers with UAV hyperspectral data[C]//Fifth International Conference on Telecommunications and Remote Sensing, Milan, ITA, 2016.
|
[74] |
STAREK M J, GIESSEL J, IEEE. Fusion of UAS-based structure-from-motion and optical inversion for seamless topo-bathymetric mapping[C]//IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, USA, 2017.
|
[75] |
WANG J L, CHEN M, ZHU W D, et al. A combined approach for retrieving bathymetry from aerial stereo RGB imagery[J]. Remote Sensing, 2022, 14(3):15.
|
[76] |
BANDINI F, FRIAS M C, LIU J, et al. Challenges with regard to unmanned aerial systems (UASs) measurement of river surface velocity using doppler radar[J]. Remote Sensing, 2022, 14(5):23.
|
[77] |
FULTON J W, ANDERSON I E, CHIU C L, et al. Qcam:sUAS-based doppler radar for measuring river discharge[J]. Remote Sensing, 2020, 12(20):23.
|
[78] |
TAURO F, PAGANO C, PHAMDUY P, et al. Large-scale particle image velocimetry from an unmanned aerial vehicle[J]. IEEE-Asme Transactions on Mechatronics, 2015, 20(6):3269-3275.
|
[79] |
DAL SASSO S F, PIZARRO A, SAMELA C, et al. Exploring the optimal experimental setup for surface flow velocity measurements using PTV[J]. Environmental Monitoring and Assessment, 2018, 190(8), 460.
|
[80] |
SCHWEITZER S A, COWEN E A. Instantaneous river-wide water surface velocity field measurements at centimeter scales using infrared quantitative image velocimetry[J]. Water Resources Research, 2021, 57(8):eWR029279.
|
[81] |
JOLLEY M J, RUSSELL A J, QUINN P F, et al. Considerations when applying large-scale PIV and PTV for determining river flow velocity[J]. Frontiers in Water, 2021, 3.
|
[82] |
PERKS M T. KLT-IV v1.0:Image velocimetry software for use with fixed and mobile platforms[J]. Geoscientific Model Development, 2020, 13(12):6111-6130.
|
[83] |
MESELHE E A, PEEVA T, MUSTE M. Large scale particle image velocimetry for low velocity and shallow water flows[J]. Journal of Hydraulic Engineering, 2004, 130(9):937-940.
|
[84] |
DAL SASSO S F, PIZARRO A, MANFREDA S. Metrics for the quantification of seeding characteristics to enhance image velocimetry performance in rivers[J]. Remote Sensing, 2020, 12(11):20.
|
[85] |
PIZARRO A, DAL SASSO S F, PERKS M T, et al. Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow[J]. Hydrology and Earth System Sciences, 2020, 24(11):5173-5185.
|
[86] |
PIZARRO A, DAL SASSO S F, MANFREDA S. Refining image-velocimetry performances for streamflow monitoring:Seeding metrics to errors minimization[J]. Hydrological Processes, 2020, 34(25):5167-5175.
|
[87] |
LIU W C, LU C H, HUANG W C. Large-scale particle image velocimetry to measure streamflow from videos recorded from unmanned aerial vehicle and fixed imaging system[J]. Remote Sensing, 2021, 13(14):20.
|
[88] |
TAURO F, TOSI F, MATTOCCIA S, et al. Optical tracking velocimetry (OTV):leveraging optical flow and trajectory-based filtering for surface streamflow observations[J]. Remote Sensing, 2018, 10(12).
|
[89] |
FUJITA I, WATANABE H, TSUBAKI R. Development of a non-intrusive and efficient flow monitoring technique:the space-time image velocimetry (STIV)[J]. International Journal of River Basin Management, 2007, 5(2):105-114.
|
[90] |
LEITÃO J P, PEÑA-HARO S, LVTHI B, et al. Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry[J]. Journal of Hydrology, 2018, 565:791-804.
|
[91] |
LVTHI B, PHILIPPE T, PEÑA-HARO S. Mobile device app for small open-channel flow measurement[C]//Proceedings of the 7th International Congress on Environmental Modelling and Software (iEMSs' 14), San Diego, USA, 2014.
|
[92] |
HAN X L, CHEN K B, ZHONG Q, et al. Two-dimensional space-time image velocimetry for surface flow field of mountain rivers based on UAV video[J]. Frontiers in Earth Science, 2021, 9:11.
|
[93] |
TAURO F, PETROSELLI A, ARCANGELETTI E. Assessment of drone-based surface flow observations[J]. Hydrological Processes, 2016, 30(7):1114-1130.
|
[94] |
BIGGS H J, SMITH B, DETERT M, et al. Surface image velocimetry:aerial tracer particle distribution system and techniques for reducing environmental noise with coloured tracer particles[J]. River Research and Applications, 2022, 38(6).
|
[95] |
BOTÍN-SANABRIA D M, MIHAITA A-S, PEIMBERT-GARCÍA R E, et al. Digital twin technology challenges and applications:a comprehensive review[J]. Remote Sensing, 2022, 14(6).
|
[96] |
李建新. 数字孪生海河建设及关键技术[J]. 中国水利, 2022(9):17-20.
|
[97] |
李文正. 数字孪生流域系统架构及关键技术研究[J]. 中国水利, 2022(9):25-29.
|
[98] |
夏润亮, 李涛, 余伟, 等. 流域数字孪生理论及其在黄河防汛中的实践[J]. 中国水利, 2021(20):11-13.
|
[99] |
JIANG L G, BANDINI F, SMITH O, et al. The value of distributed high-resolution UAV-borne observations of water surface elevation for river management and hydrodynamic modeling[J]. Remote Sensing, 2020, 12(7):15.
|
[100] |
LANGHAMMER J, BERNSTEINOVA J, MIRIJOVSKY J. Building a high-precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring[J]. Water, 2017, 9(11):22.
|