Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001
Citation: XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001

ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES

doi: 10.13205/j.hjgc.202307001
  • Received Date: 2022-11-16
  • Anaerobic digestion (AD) is one of the promising approaches to treat sludge for resource recovery and carbon reduction, but the efficiency of resource recovery and carbon reduction varied greatly under different treatment strategies. This work comprehensively evaluated the energy recovery and carbon emissions of four different treatment routes (i.e. conventional anaerobic digestion (R1), hydrothermal pretreatment at 90℃/170℃ (R2), co-digestion (R3) and hydrothermal pretreatment with co-digestion (R4), based on the Intergovernmental Panel on Climate Change (IPCC) methodology. Results indicated that the methane production followed an order of R1 < R290℃ < R2170℃ < R3 < R4, while the net carbon emission followed an order of R3 < R290℃ < R1 < R4 < R2170℃. All routes have achieved the aims of carbon neutrality >100% and negative carbon emissions, due to the self-sufficient heat and electricity. R2170℃ generated 15.4% more methane than R290℃, but simultaneously increased 110% heat consumption and 60.5% carbon emissions (with a proportion of 74.3% indirect carbon emission). R4 produced 6.3% more methane than R3, but also increased 110% heat consumption and 61.9% carbon emissions (with a proportion of 95.9% indirect carbon emission). However, in R3, more than 40.9% methane was generated compared with that of R2170℃, and it also reduced 52.7% heat consumption and 413% carbon emissions. These results implied that the co-digestion showed advantages over hydrothermal pretreatment for sludge anaerobic treatment in view of both energy recovery and carbon emission reduction. A balance between more energy input and increased operational performance should be considered in selecting the optimal sludge treatment route.
  • [1]
    WU K, DOU X, ZHANG X, et al.The sodium-ion battery:an energy-storage technology for a carbon-neutral world[J/OL].Engineering, 2023,21(2).DOI: 10.1016/j.eng.2022.04.011.
    [2]
    WU J N, LI X, JIN R.The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism:coal chemical case study[J].Energy, 2022, 261:125172.
    [3]
    HUANG B, XING K, NESS D, et al.Rethinking carbon-neutral built environment:urban dynamics and scenario analysis[J].Energy and Buildings, 2022, 255:111672.
    [4]
    戴晓虎,张辰,章林伟,等.碳中和背景下污泥处理处置与资源化发展方向思考[J].给水排水, 2021, 47(3):1-5.
    [5]
    宋新新,刘杰,林甲,等.碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J].环境科学学报, 2022, 42(4):53-63.
    [6]
    ZHANG C, YANG X, TAN X J, et al.Sewage sludge treatment technology under the requirement of carbon neutrality:recent progress and perspectives[J].Bioresource Technology, 2022, 362:127853.
    [7]
    戴晓虎,侯立安,章林伟,等.我国城镇污泥安全处置与资源化研究[J].中国工程科学, 2022, 24(5):145-153.
    [8]
    DI COSTANZO N, CESARO A, DI CAPUA F, et al.Exploiting the nutrient potential of anaerobically digested sewage sludge:a review[J].Energies, 2021, 14(23):8149.
    [9]
    MUNASINGHE-ARACHCHIGE S P, NIRMALAKHANDAN N.Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge[J].Environmental Science & Technology Letters, 2020, 7(7):450-459.
    [10]
    WU B R, LI H W, ZHOU K, et al.Three birds with one stone:N/P recovery, dewaterability improvement, and facilitating liquid digestate treatment of anaerobically digested sludge[J].ACS Sustainable Chemistry & Engineering, 2022, 10(37):12402-12410.
    [11]
    戴晓虎.我国污泥处理处置现状及发展趋势[J].科学, 2020, 72(6):30-34

    ,4.
    [12]
    李慧莉,杨子显,陈志强,等.基质负荷对秸秆与污泥厌氧消化微生物群落结构的影响[J].哈尔滨工业大学学报, 2020, 52(11):18-25.
    [13]
    陈珺,杨琦.污泥高级厌氧消化的应用现状与发展趋势[J].中国给水排水, 2016, 32(6):19-23.
    [14]
    CHOI J M, HAN S K, LEE C Y.Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J].Bioresource Technology, 2018, 259:207-213.
    [15]
    SHI Y, XU J P.A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion[J].Energy, 2023, 262:125243.
    [16]
    林文聪,赵刚,刘伟,等.污水厂污泥典型处理处置工艺碳排放核算研究[J].环境工程, 2017, 35(7):175-179.
    [17]
    郝晓地,王向阳,曹达啟,等.污水有机物中化石碳排放CO2辨析[J].中国给水排水, 2018, 34(2):13-17.
    [18]
    IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL].https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, 2006-04-26.
    [19]
    陈菊香,张疆.厌氧消化/热电联产用于污水厂污泥处理改造[J].中国给水排水, 2012, 28(22):102-104.
    [20]
    李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190.
    [21]
    王琳,李德彬,刘子为,等.污泥处理处置路径碳排放分析[J].中国环境科学, 2022, 42(5):2404-2412.
    [22]
    国家市场监督管理总局,国家标准化管理委员会.综合能耗计算通则:GB/T 2589-2020[S].
    [23]
    IPCC.2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory[R].
    [24]
    中国特种设备检测研究院,国家质量监督检验检疫总局,北京特种设备行业协会,等.锅炉节能技术监督管理规程[Z].2010:17P.;A4.
    [25]
    IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 5):waste[EB/OL].2006.http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html.2015-08-16.
    [26]
    郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报, 2017, 11(2):673-682.
    [27]
    宋晓雅.污泥热水解厌氧消化与常规厌氧消化的运行比较[J].给水排水, 2019, 55(3):26-30.
    [28]
    张琦东.热水解对污泥厌氧消化可降解性的影响及其机理探究[J].工业安全与环保, 2018, 44(2):57-60.
    [29]
    次瀚林,王先恺,董滨.不同污泥干化焚烧技术路线全链条碳足迹分析[J].净水技术, 2021, 40(6):77-82

    ,99.
    [30]
    杭世珺,关春雨.污泥厌氧消化工艺运行阶段的碳减排量分析[J].给水排水, 2013, 49(4):44-50.
    [31]
    王昱琛,宿程远,丁凤秀,等.厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J].广西师范大学学报(自然科学版),2022,40(5):406-417.
    [32]
    丁月玲,张焕焕,董滨,等.有机生活垃圾与脱水污泥协同厌氧消化工艺的性能[J].净水技术, 2017, 36(2):40-44

    ,50.
    [33]
    ZHOU P, MESHREF M N A, DHAR B R.Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation[J].Bioresource Technology, 2021, 321:124498.
    [34]
    LU D, SUN F Q, ZHOU Y.Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J].Bioresource Technology, 2018, 266:60-67.
    [35]
    LI H, JIN C, ZHANG Z Y, et al.Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways[J].Energy, 2017, 126:649-657.
    [36]
    ZHANG L, ZHANG Y T, ZHANG Q, et al.Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process[J].Journal of the Energy Institute, 2014, 87(2):121-126.
    [37]
    LI Y, TANG Y P, XIONG P, et al.High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J].Water Research, 2020, 176:115763.
    [38]
    ISMAIL A, KAKAR F L, ELBESHBISHY E, et al.Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste[J].Renewable Energy, 2022, 195:528-539.
    [39]
    CAO X Q, YUAN H Y, TIAN Y Q.Anaerobic co-digestion of sewage sludge pretreated by thermal hydrolysis and food waste:gas production, dewatering performance, and community structure[J].Environ Technol, 2022,16:1-12.
    [40]
    郝晓地,唐兴,曹达啓.剩余污泥厌氧共消化技术研究现状及应用趋势[J].环境工程学报, 2016, 10(12):6809-6818.
  • Relative Articles

    [1]LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016
    [2]YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022
    [3]ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002
    [4]ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015
    [5]ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012
    [6]JIANG Lihua, ZHUO Guihua, HE Yuheng, YANG Shugui, LIN Hong, ZHENG Yuyi. INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001
    [7]SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
    [8]LI Ziyu, LI Zhenzhou, DOU Yuting, LUO Jingyang. INFLUENCES OF HETEROLOGOUS SUBSTANCES OCCURRED IN FOOD WASTE ON ANAEROBIC DIGESTION AND REGULATION STRATEGIES: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 222-232. doi: 10.13205/j.hjgc.202306029
    [9]LIU Jun, PAN Tianqi, ZHAO Huihui, GUO Yan, CHEN Guanyi, HOU Li'an. A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 133-139. doi: 10.13205/j.hjgc.202309016
    [10]WANG Yongping, FANG Haojue, HUA Ruoting, HE Yuheng, ZHANG Yanqiong, ZHENG Yuyi, LIU Changqing, ZHEN Guangyin. COMPREHENSIVE INFLUENCE OF MULTIPLE FACTORS ON HYDROGEN PRODUCTION FROM COMBINED ANAEROBIC FERMENTATION OF SLUDGE AND KITCHEN WASTE UNDER MEDIUM TEMPERATURE CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 103-110. doi: 10.13205/j.hjgc.202303014
    [11]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [12]YANG Yuan, DENG Weihang, HU Yisong, CHEN Rong, WANG Xiaochang. RESEARCH PROGRESS ON COUPLED CARBON CAPTURE-ANAEROBIC DIGESTION TECHNOLOGY FOR ENERGY RECOVERY FROM MUNICIPAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 213-221. doi: 10.13205/j.hjgc.202305028
    [13]YUAN Yue, WANG Bo, LI Yongbo, KE Hang, ZHAO Shuiqian. ENHANCEMENT OF CO-DIGESTION OF SLUDGE AND FOOD WASTE BY HIGH TEMPERATURE PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 91-97. doi: 10.13205/j.hjgc.202302013
    [14]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [15]WANG Zhenhua, WU Juan, SONG Jianguo, BAI Jie. EFFECTS OF THERMAL HYDROLYSATES FROM MUNICIPAL SOLID WASTE ON SOIL ENZYME ACTIVITY AND SPINACH GROWTH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 126-131. doi: 10.13205/j.hjgc.202203019
    [16]LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027
    [17]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [18]CHEN Yi-shuang, WEI Tao-yuan, ZHOU Tao, DONG Ding-shuo, LIN Qing-shan, WANG Zong-ping, GUO Gang. EFFECT OF ELECTROCHEMICAL PRETREATMENT ON PRODUCTION OF VOLATILE FATTY ACIDS BY CO-ANAEROBIC FERMENTION OF FOOD WASTE AND SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 187-192. doi: 10.13205/j.hjgc.202109026
    [19]Li Wei Liang Meisheng Pei Xuqian Jiang Junjie, . RESEARCH ON APPLICATION OF PULSED ELECTRIC FIELD IN ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 106-109. doi: 10.13205/j.hjgc.201503022
    [20]CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027
  • Cited by

    Periodical cited type(7)

    1. 李淑夏. 青岛某污水厂对沼气热电联产预估模型的分析. 电器工业. 2024(04): 47-51+56 .
    2. 王航,王先恺,陈祥,李锟,乔雪园,刘枫,董滨. 城市有机固体废弃物协同处置碳排放分析. 环境工程. 2024(02): 66-72 . 本站查看
    3. 华飞虎,韩芸,卓杨,王松,刘奕,周梦雨. 温度及有机负荷对高温高含固污泥厌氧消化启动期产甲烷特性影响研究. 环境科学研究. 2024(09): 2020-2029 .
    4. 刘德兰,封莉,韩绮,高鹏,张立秋. 碳排放视角下剩余污泥作为污水脱氮碳源的可行性分析. 环境工程学报. 2024(08): 2089-2098 .
    5. 李旺霞. “双碳”背景下污水处理行业降碳减排路径研究. 资源节约与环保. 2024(10): 13-16 .
    6. 刘新鲁. 碳中和背景下食品污泥的资源化利用前景分析. 广州建筑. 2024(08): 81-86 .
    7. 李建园,孙昱楠,黄佳乐,陈奇晶,贾悦,高豫乐,程占军,颜蓓蓓,陈冠益. 废弃生物降解塑料不同处置技术碳排放分析. 环境工程. 2023(09): 124-132 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 85.1 %META: 85.1 %PDF: 5.3 %PDF: 5.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.2 %其他: 0.2 %上海: 5.5 %上海: 5.5 %东莞: 0.8 %东莞: 0.8 %临汾: 1.2 %临汾: 1.2 %临沂: 0.2 %临沂: 0.2 %丽水: 0.4 %丽水: 0.4 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %北京: 6.9 %北京: 6.9 %十堰: 0.8 %十堰: 0.8 %南京: 5.9 %南京: 5.9 %南昌: 0.4 %南昌: 0.4 %南通: 0.4 %南通: 0.4 %厦门: 0.6 %厦门: 0.6 %台北: 0.6 %台北: 0.6 %吉林: 0.2 %吉林: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 1.2 %哈尔滨: 1.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.4 %大同: 0.4 %大连: 0.2 %大连: 0.2 %天津: 1.8 %天津: 1.8 %太原: 0.2 %太原: 0.2 %宁波: 0.4 %宁波: 0.4 %宜春: 0.2 %宜春: 0.2 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %庆阳: 1.2 %庆阳: 1.2 %延安: 0.2 %延安: 0.2 %开封: 0.4 %开封: 0.4 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %德州: 0.2 %德州: 0.2 %惠州: 0.2 %惠州: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.4 %扬州: 0.4 %无锡: 1.2 %无锡: 1.2 %昆明: 1.6 %昆明: 1.6 %晋城: 0.2 %晋城: 0.2 %杭州: 1.6 %杭州: 1.6 %榆林: 0.2 %榆林: 0.2 %武威: 0.2 %武威: 0.2 %武汉: 2.4 %武汉: 2.4 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.8 %济南: 0.8 %海口: 0.2 %海口: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.6 %温州: 0.6 %漯河: 1.4 %漯河: 1.4 %澳门: 0.4 %澳门: 0.4 %烟台: 0.2 %烟台: 0.2 %白沙: 0.4 %白沙: 0.4 %盐城: 1.4 %盐城: 1.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.6 %福州: 0.6 %芒廷维尤: 8.6 %芒廷维尤: 8.6 %芝加哥: 1.4 %芝加哥: 1.4 %苏州: 0.6 %苏州: 0.6 %茂名: 0.6 %茂名: 0.6 %衡阳: 0.2 %衡阳: 0.2 %西宁: 10.0 %西宁: 10.0 %西安: 2.4 %西安: 2.4 %贵阳: 0.8 %贵阳: 0.8 %资阳: 1.2 %资阳: 1.2 %运城: 1.0 %运城: 1.0 %通辽: 0.6 %通辽: 0.6 %遵义: 0.4 %遵义: 0.4 %郑州: 2.2 %郑州: 2.2 %重庆: 1.8 %重庆: 1.8 %铁岭: 1.0 %铁岭: 1.0 %银川: 0.2 %银川: 0.2 %长沙: 0.8 %长沙: 0.8 %随州: 0.2 %随州: 0.2 %青岛: 1.8 %青岛: 1.8 %鹤壁: 0.4 %鹤壁: 0.4 %其他其他上海东莞临汾临沂丽水佛山保定北京十堰南京南昌南通厦门台北吉林呼和浩特哈尔滨嘉兴大同大连天津太原宁波宜春宣城巴音郭楞常州常德广州庆阳延安开封张家口徐州德州惠州意法半成都扬州无锡昆明晋城杭州榆林武威武汉沈阳洛阳济南海口深圳温州漯河澳门烟台白沙盐城石家庄福州芒廷维尤芝加哥苏州茂名衡阳西宁西安贵阳资阳运城通辽遵义郑州重庆铁岭银川长沙随州青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (433) PDF downloads(28) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return