Citation: | WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026 |
[1] |
于江杰.我国再生水回用现状分析及展望[J].四川水泥,2019,274(6):119.
|
[2] |
张琦,王亚娥,李杰,等.溶解氧对生物海绵铁体系中海绵铁腐蚀的影响[J].环境工程,2023,41(2):60-65.
|
[3] |
中华人民共和国住房和城乡建设部.城镇供热管网设计规范:CJJ 34-2010[M].2010.
|
[4] |
马淑芹,于宏兵,蒋彬,等.电力行业节能减排途径探讨[J].环境工程,2008,26(增刊1):196-199,251.
|
[5] |
杜旭昌.化学除氧在锅炉水处理中的应用[J].造纸装备及材料,2021,50(11):136-138.
|
[6] |
王正平,杨淑华.新型除氧剂研究[J].应用科技,2001,28(3):37-38.
|
[7] |
丁姗姗,曹顺安,胡家元.锅炉给水处理中的化学除氧剂[J].工业水处理,2010,30(4):17-21.
|
[8] |
肖栓柱.碳酰肼在电厂化学中的应用[J].石化技术,2017,24(5):51.
|
[9] |
LIANG M S, YUAN J, LI L, et al.The preparation of a catalyst doped with Cu and Al on MCM-41 and its catalytic reduction removal of dissolved oxygen in reclaimed water at low temperatures[J].New Journal of Chemistry,2021,45(25):11336-11346.
|
[10] |
王洁,梁美生,叶翠平.改性活性炭纤维催化碳酰肼去除给水中的溶解氧[J].华侨大学学报(自然科学版),2018,39(5):720-725.
|
[11] |
张恒瑞,梁美生,陈曦,等.甘氨酸席夫碱Cu配合物催化还原去除锅炉给水中溶解氧的探讨[J].太原理工大学学报,2022,53(1):44-50.
|
[12] |
袁杰.Cu-SBA-15催化剂的制备及催化去除再生水中溶解氧[D].太原:太原理工大学,2021.
|
[13] |
陈树军,裴剑霖,付越,等.改性MCM41孔内水分子吸附扩散行为的模拟研究[J].辽宁石油化工大学学报,2022,42(3):1-7.
|
[14] |
SELVARAJ M, SESHADRI K S, PANDURANGAN A, et al.Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr-Mn-MCM-41 molecular sieves[J].Microporous & Mesoporous Materials,2005,79(1/2/3):261-268.
|
[15] |
鲁奇林,李雨擎.MCM-41分子筛的水热合成、改性及其应用研究进展[J].现代化工,2019,39(4):40-44.
|
[16] |
CARLO P, ROBERTO M.Porous materials in catalysis:challenges for mesoporous materials[J].Chemical Society Reviews,2013,42(9):3956-3976.
|
[17] |
蔡超.功能化MCM-41介孔材料的合成与催化性能的研究[D].天津:天津大学,2011.
|
[18] |
TEWFIK D A, LAMIA B, RACHIDA H, et al.Comparison of lewis acidity between Al-MCM-41 pure chemicals and Al-MCM-41 synthesized from bentonite[J].Bulletin of Chemical Reaction Engineering & Catalysis,2019,14(2):358-368.
|
[19] |
周旭平.含杂原子介孔材料的合成及其催化性能研究[D].镇江:江苏大学,2010.
|
[20] |
胡灯红,郑华均.MCM-41介孔分子筛改性研究进展[J].浙江化工,2011,42(3):15-19.
|
[21] |
TANG W W, ZHANG H, LU Y, et al.Two-step hydrothermal synthesis of β-MCM-41 composite molecular sieves as supports of bifunctional catalysts for hydroisomerization of n-heptane[J].Journal of Porous Materials,2016,23(6):1489-1493.
|
[22] |
孙洪平.金属改性介孔分子筛的制备及其催化氧化脱硫研究[D].大庆:东北石油大学,2017.
|
[23] |
李来胜,孙强强.用于催化臭氧氧化的金属改性MCM-41研究进展[J].华南师范大学学报(自然科学版),2013,45(6):124-128.
|
[24] |
刘东坡,陈伟锐,王静,等.铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬[J].环境工程学报,2022,16(9):2850-2861.
|
[25] |
张花,杨华明.碱性水热环境下制备MCM-41介孔材料的分形表征[J].硅酸盐通报,2014,33(11):2952-2957.
|
[26] |
LOCUS R, VERBOEKEND D, ZHONG R, et al.Correction to enhanced acidity and accessibility in Al-MCM-41 through aluminum activation[J].Chemistry of Materials,2016,29(2):904.
|
[27] |
QI J, NEEVA B, DAVID J C, et al.Carbon nanotubes as catalysts for direct carbohydrazide fuel cells[J].Carbon,2015,89:142-147.
|
[28] |
王俊梅,杨继光,闫新琦,等.水中联氨浓度检测方法的探讨[J].计量技术,2014,477(5):23-26.
|
[1] | HU Hongying, LU Yun, WEI Dongbin, CHEN Zhuo, WU Yinhu, WU Qianyuan, HUANG Nan, YUAN Baoling, XU Ming, WANG Aijie, LIU Xianwei, QI Weixiao, BAI Yaohui, LIANG Bin, GAO Shuhong, ZHANG Zhiyong, ZOU Rusen. SAFETY GUARANTEE REQUIREMENTS AND DEVELOPMENT STRATEGIES FOR ECOLOGICAL USES OF RECLAIMED WATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 1-10. doi: 10.13205/j.hjgc.202410001 |
[2] | LI Ru, LI Xiaokang, FENG Yan, WANG Xueyan, XING Qianyun. DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019 |
[3] | WANG Chengwen, ZHANG Yong, ZHANG Jiaxin, ZHANG Hui. SPATIAL DISTRIBUTION OF SEDIMENT NUTRIENTS IN A WETLAND WITH RECLAIMED WATER SUPPLEMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 87-92,104. doi: 10.13205/j.hjgc.202301011 |
[4] | CHEN Sisi, TANG Xingying, REN Pengwei, LIN Zitao, QIN Zu'an, ZHU Riguang, WANG Yinghui. RESEARCH PROGRESS ON APPLICATION OF CATALYSTS IN HYDROTHERMAL CARBONIZATION PROCESS OF BIOMASS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 195-204. doi: 10.13205/j.hjgc.202304027 |
[5] | ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009 |
[6] | HAO Shuran, CHEN Zhuo, XU Ao, WU Yinhu, LI Guoqiang, NI Xinye, HU Hongying. ANALYSIS OF WATER REUSE SITUATIONS AND POTENTIALS IN MAIN CITIES IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 1-8,79. doi: 10.13205/j.hjgc.202210001 |
[7] | YU Ying-nan, SUN Dan-yan, ZHENG Tao, CHENG Wei, LU Zhi-bo, LU Li-jun, HUANG Ju-wen, XU Jing-cheng. ECOLOGICAL RESTORATION EFFECT AND SAFETY EVALUATION OF RECLAIMED WATER FROM SEWAGE TREATMENT PLANT FOR URBAN RIVERS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 1-5,26. doi: 10.13205/j.hjgc.202106001 |
[8] | GAO Shuai-qiang, SHAO Hui-huang, BAI Chun-yin, HU Xing-bao, YU Guang-wei, CHONG Yun-xiao, LI Feng-min, HU Hong-ying. THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 7-12,91. doi: 10.13205/j.hjgc.202104002 |
[9] | SHI Liang-liang, LU Yun, CHEN Meng-hao, LIU Gang. GUIDING SIGNIFICANCE OF MICROBIAL BENCHMARK IN RECLAIMED WATER DETECTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 22-28. doi: 10.13205/j.hjgc.202103004 |
[10] | FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015 |
[11] | LUO Ya-yue, LI Cui-qing, ZHANG Wei, ZHANG Chen, SONG Yong-ji, WANG Hong. RESEARCH PROGRESS IN CATALYSTS FOR SELECTIVE CATALYTIC OXIDATION OF NITRIC OXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 101-105,88. doi: 10.13205/j.hjgc.202101015 |
[12] | FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017 |
[13] | ZHANG Ru-jie, WANG Fu-mei, BAI Peng-fei, CHEN Xiao-gen, WANG Zhi, SHEN Bo-xiong, WU Chun-fei. NH3-SCR PERFORMANCE OF LOW VANADIUM-BASED CATALYST PREPARED BY BALL MILLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 103-110. doi: 10.13205/j.hjgc.202103015 |
[14] | YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003 |
[15] | WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, CHEN Yu-feng, DAI Chang-you, HU Li-ming. EFFECT OF ZrO2 DOPING ON DENITRIFICATION PERFORMANCE OF V2O5-MoO3/TiO2 CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 107-112,119. doi: 10.13205/j.hjgc.202005019 |
[16] | LI Shang, TAO Yi, DAO Guo-Hua, JIANG Hai-Sha, Zhou-ji, YU Wen-Wen, XUE Yuan-Mei, YONG Xiao-Lei, HE Zhi-Ming, XIE Huai-Jian, FU Zhi-Min, HU Hong-ying. GROWTH SUPPRESSION EFFECT OF UV-C IRRADIATION ON SCENEDESMUS OBLIQUUS IN RECLAIMED WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 97-102,113. doi: 10.13205/j.hjgc.202010015 |
[17] | LIU Chang-dong, YU Shuang-jiang, MIAO Xue, SHAN Liang, LIU Jun, PENG Yue, CHEN Jian-jun, LI Jun-hua. EFFECTS OF CHELATING AGENTS OF VANADIUM SALT ON PHYSICOCHEMICAL PROPERTIES AND CATALYTIC PERFORMANCES OF V2O5/TiO2 SCR CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 174-179,81. doi: 10.13205/j.hjgc.202008029 |
[18] | GUO Tian-tian, ZHANG Han, AN Wen-gang, DUAN Yu-tong, FAN Wei, HUO Ming-xin. COMPOSITIONAL STRUCTRE CHANGES AND CHARACTERISTICS OF DISSOLVED ORGANIC MATTERS DURING ARTIFICIAL GROUNDWATER RECHARGE WITH RECLAIMED WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 126-131,107. doi: 10.13205/j.hjgc.202006020 |
[19] | ZHU Heng, DONG Chang-qing, WANG Xiao-dong, ZHU Yan-jun, SHEN Chen, ZHANG Xu-ming, QIN Wu, HU Xiao-ying, ZHANG Jun-jiao, WANG Xiao-qiang, ZHAO Ying, XUE Jun-jie. PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 168-174. doi: 10.13205/j.hjgc.202009027 |
[20] | INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010 |