Citation: | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[1] |
CALDERON A G, DUAN H, MENG J, et al. An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 195:116977.
|
[2] |
SHI Z, CAMPANARO S, USMAN M, et al. Genome-centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2021, 55(12):8351-8361.
|
[3] |
LI Y, CHEN Z, PENG Y, et al. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste[J]. Water Reserach, 2022, 217:118440.
|
[4] |
赵刚, 唐建国, 徐竟成, 等. 中美典型污泥处理处置工程能耗和碳排放比较分析[J]. 环境工程, 2022, 40(12):9-16.
|
[5] |
RAJAGOPAL R, MASSÉ D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143:632-641.
|
[6] |
JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion:a critical review[J]. Journal of Water Process Engineering, 2019, 32:100899.
|
[7] |
WANG Z, JIANG Y, WANG S, et al. Impact of total solids content on anaerobic co-digestion of pig manure and food waste:insights into shifting of the methanogenic pathway[J]. Waste Management, 2020, 114:96-106.
|
[8] |
何仕均, 王建龙, 赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版), 2005, 9(45):1294-1296.
|
[9] |
LIU C, HUANG H, DUAN X, et al. Integrated metagenomic and metaproteomic analyses unravel ammonia toxicity to active methanogens and syntrophs, enzyme synthesis, and key enzymes in anaerobic digestion[J]. Environmental Science & Technology, 2021, 55(21):14817-14827.
|
[10] |
ZHANG H, YUAN W, DONG Q, et al. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress[J]. Water Research, 2022, 213:118152.
|
[11] |
LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes:a review[J]. Environment International, 2019, 123:10-19.
|
[12] |
SAHA S, BASAK B, HWANG J H, et al. Microbial symbiosis:a network towards biomethanation[J]. Trends in Microbiology, 2020, 28(12):968-984.
|
[13] |
CARBALLA M, REGUEIRO L, LEMA J M. Microbial management of anaerobic digestion:exploiting the microbiome-functionality nexus[J]. Current Opinion in Biotechnology, 2015, 33:103-111.
|
[14] |
SIEBER J R, MCINERNEY M J, GUNSALUS R P. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation[J]. Annual Review of Microbiology, 2012, 66:429-452.
|
[15] |
SPROTT G D, PATEL G B. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic and Applied Microbiology, 1986, 7(2/3):358-363.
|
[16] |
FOTIDIS I A, KARAKASHEV D, ANGELIDAKI I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels[J]. International Journal of Environmental Science and Technology, 2013, 11(7):2087-2094.
|
[17] |
WANG Z, WANG S, HU Y, et al. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures[J]. Water Research, 2022, 224:119029.
|
[18] |
LV Z, LEITE A F, HARMS H, et al. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition[J]. Applied Microbiology and Biotechnology, 2019, 103(1):519-533.
|
[19] |
RUIZ-SANCHEZ J, CAMPANARO S, GUIVERNAU M, et al. Effect of ammonia on the active microbiome and metagenome from stable full-cale digesters[J]. Bioresource Technology, 2018, 250:513-522.
|
[20] |
CHEN H, WANG W, XUE L, et al. Effects of ammonia on anaerobic digestion of food waste:process performance and microbial community[J]. Energy & Fuels, 2016, 30(7):5749-5757.
|
[21] |
CHRISTOU M L, VASILEIADIS S, KALAMARAS S D, et al. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics[J]. Bioresource Technology, 2021, 320:124323.
|
[22] |
HE L, YU J, LIN Z, et al. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent[J]. Journal of Environmental Management, 2022, 317:115428.
|
[23] |
彭韵, 李蕾, 伍迪, 等. 微生物群落对氨胁迫响应的宏基因组学研究[J]. 中国环境科学, 2022, 42(2):777-786.
|
[24] |
CALLI B, MERTOGLU B, INANC B, et al. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J]. Process Biochemistry, 2005, 40(3/4):1285-1292.
|
[25] |
ZHANG C, YUAN Q, LU Y. Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge[J]. Water Research, 2018, 146:275-287.
|
[26] |
PENG X, ZHANG S, LI L, et al. Long-term high-solids anaerobic digestion of food waste:effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262:148-158.
|
[27] |
ZHANG H, PENG Y, YANG P, et al. Response of process performance and microbial community to ammonia stress in series batch experiments[J]. Bioresource Technology, 2020, 314:123768.
|
[28] |
YE M, ZHU A, SUN B, et al. Methanogenic treatment of dairy product wastewater by thermophilic anaerobic membrane bioreactor:ammonia inhibition and microbial community[J]. Bioresource Technology, 2022, 357:127349.
|
[29] |
MLINAR S, WEIG A R, FREITAG R. Influence of NH3 and NH4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations[J]. Bioresource Technology, 2022, 361:127638.
|
[30] |
CYPIONKA H, WIDDEL F, PFENNIG N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients[J]. FEMS microbiology ecology, 1985, 1(1):39-45.
|
[31] |
BOONE D R, BRYANT M P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems[J]. Applied and Environmental Microbiology, 1980, 40(3):626-632.
|
[32] |
DWYER D F, WEEG-AERSSENS E, SHELTON D R, et al. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria[J]. Applied and Environmental Microbiology, 1988, 54(6):1354-1359.
|
[33] |
LIU C, ZHANG X, CHEN C, et al. Physiological responses of Methanosarcina barkeri under ammonia stress at the molecular level:the unignorable lipid reprogramming[J]. Environmental Science & Technology, 2023, 57(9):3917-3929.
|
[34] |
MCNEIL P L, STEINHARDT R A. Loss, restoration, and maintenance of plasma membrane integrity[J]. The Journal of Cell Biology, 1997, 137(1):1-4.
|
[35] |
CALLI B, MERTOGLU B, INANC B, et al. Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels[J]. Enzyme and Microbial Technology, 2005, 37(4):448-455.
|
[36] |
CALLI B, MERTOGLU B, INANC B, et al. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia[J]. Environmental Technology, 2005, 26(1):85-91.
|
[37] |
JEYENDRAN R, VAN DER VEN H, PEREZ-PELAEZ M, et al. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics[J]. Reproduction, 1984, 70(1):219-228.
|
[38] |
ROY S, MONDAL A, YADAV V, et al. Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets:membrane damage, metabolic inactivation, and oxidative stress[J]. ACS Applied Bio Materials, 2019, 2(7):2738-2755.
|
[39] |
SCHNAIDER L, BRAHMACHARI S, SCHMIDT N W, et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity[J]. Nature Communication, 2017, 8(1):1365.
|
[40] |
PENG Y, LI L, YANG P, et al. Integrated genome-centric metagenomic and metaproteomic analyses unravel the responses of the microbial community to ammonia stress[J]. Water Research, 2023, 242:120239.
|
[41] |
PADMAKUMAR R, PADMAKUMAR R, BANERJEE R. Evidence that cobalt-carbon bond homolysis is coupled to hydrogen atom abstraction from substrate in methylmalonyl-CoA mutase[J]. Biochemistry, 1997, 36(12):3713-3718.
|
[42] |
WEBSTER M W, TAKACS M, ZHU C, et al. Structural basis of transcription-translation coupling and collision in bacteria[J]. Science, 2020, 369(6509):1355-1359.
|
[43] |
KORKHIN Y, UNLIGIL U M, LITTLEFIELD O, et al. Evolution of complex RNA polymerases:the complete archaeal RNA polymerase structure[J]. PLoS Biology, 2009, 7(5):e1000102.
|
[44] |
YUSUPOV M M, YUSUPOVA G Z, BAUCOM A, et al. Crystal structure of the ribosome at 5.5Å resolution[J]. Science, 2001, 292(5518):883-896.
|
[45] |
SCHMEING T M, VOORHEES R M, KELLEY A C, et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA[J]. Science, 2009, 326(5953):688-694.
|
[46] |
KAYHANIAN M. Ammonia inhibition in high-solids biogasification:an overview and practical solutions[J]. Environmental Technology, 1999, 20(4):355-365.
|
[47] |
FERREIRA T, CARRONDO M, ALVES P. Effect of ammonia production on intracellular pH:consequent effect on adenovirus vector production[J]. Journal of Biotechnology, 2007, 129(3):433-438.
|
[48] |
SPROTT G D, SHAW K M, JARRELL K F. Ammonia/potassium exchange in methanogenic bacteria[J]. Journal of Biological Chemistry, 1984, 259(20):12602-12608.
|
[49] |
WITTMANN C, ZENG A P, DECKWER W D. Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum[J]. Applied Microbiology and Biotechnology, 1995, 44(3):519-525.
|
[50] |
KUHNER C, DRAKE H, ALM E, et al. Methane production and oxidation by soils from acidic forest wetlands of east-central Germany[C]//Abstr 96th Gen Meet Am Soc Microbiol American Society for Microbiology. Washington, DC, 1996:304.
|
[51] |
LLOYD C T, IWIG D F, WANG B, et al. Discovery, structure and mechanism of a tetraether lipid synthase[J]. Nature, 2022, 609(7925):197-203.
|
[52] |
HARAYAMA T, RIEZMAN H. Understanding the diversity of membrane lipid composition[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5):281-296.
|
[53] |
LOPEZ-LARA I M, GEIGER O. Bacterial lipid diversity[J]. Biochimica et biophysica acta:molecular and cell biology of lipids, 2017, 1862(11):1287-1299.
|
[54] |
QI Z, SUN N, LIU C. Glyoxylate cycle maintains the metabolic homeostasis of Pseudomonas aeruginosa in viable but nonculturable state induced by chlorine stress[J]. Microbiological Research, 2023, 270:127341.
|
[55] |
BALLWEG S, SEZGIN E, DOKTOROVA M, et al. Regulation of lipid saturation without sensing membrane fluidity[J]. Nature Communinations, 2020, 11(1):756.
|
[56] |
LI R, GUINEY L M, CHANG C H, et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model[J]. ACS Nano, 2018, 12(2):1390-1402.
|
[57] |
SHANTA P V, LI B, STUART D D, et al. Lipidomic profiling of algae with microarray MALDI-MS toward ecotoxicological monitoring of herbicide exposure[J]. Environmental Science & Technology, 2021, 55(15):10558-10568.
|
[58] |
MARQUENO A, BLANCO M, MACEDA-VEIGA A, et al. Skeletal muscle lipidomics as a new tool to determine altered lipid homeostasis in fish exposed to urban and industrial wastewaters[J]. Environmental Science Technology, 2019, 53(14):8416-8425.
|
[59] |
TANIGUCHI M, OKAZAKI T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders[J]. Biochimica Biophysica Acta, Mol. Cell Biology Lipids, 2014, 1841(5):692-703.
|
[60] |
TANIGUCHI M, OKAZAKI T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer[J]. Cell Signalling, 2021, 87:110119.
|
[61] |
YANG P, PENG Y, LIU H, et al. Multi-scale analysis of the foaming mechanism in anaerobic digestion of food waste:from physicochemical parameter, microbial community to metabolite response[J]. Water Research, 2022, 218:118482.
|
[1] | BAO Meiling, HU Zhiquan, ZHANG Qiang, HONG Hui, DENG Jun, PEI Yunxia, LI Bingtang. CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 35-42. doi: 10.13205/j.hjgc.202408005 |
[2] | ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002 |
[3] | YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022 |
[4] | TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031 |
[5] | XIANG Yinping, XIONG Weiping, ZHANG Yanru, JIA Meiying, PENG Haihao, YANG Zhaohui. EFFECT OF SLUDGE ANAEROBIC DIGESTION ON THE REDUCTION OF ANTIBIOTIC RESISTANCE GENES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 192-202,241. doi: 10.13205/j.hjgc.202210026 |
[6] | YAO Chuang, LIU Jianxin, ZHAO Ziling, LIN Guoying, LIU Hui. EFFECTS OF CARBON RESOURCE ADDITON STRATEGIES ON PHOSPHORUS AND NITROGEN REMOVAL AND MICROBIAL COMMUNITY STRUCTURE IN AN A2/O SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 21-26,223. doi: 10.13205/j.hjgc.202201004 |
[7] | GENG Ziqian, DAI Wenting, LI Chao, TANG Jie, DAI Kun, CENG Jianxiong, ZHANG Fang. ENHANCED METHANOGENESIS OF WASTE ACTIVATED SLUDGE FERMENTATION BY DOSING AN ALGINATE-DEGRADING CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 90-95. doi: 10.13205/j.hjgc.202208012 |
[8] | NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004 |
[9] | LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027 |
[10] | TANG Meng-yuan, ZHAO Jia-qi, QIU Chun-sheng, WANG Bing-bing, WANG Ren-jie, ZHONG Liang, SUN Li-ping. RESEARCH PROGRESS ON PHYSICOCHEMICAL CHARACTERISTICS OF BIOCHAR AND ITS IMPROVEMENT EFFECT ON ANAEROBIC DIGESTION EFFICIENCY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 138-145. doi: 10.13205/j.hjgc.202109020 |
[11] | JING Xue, CHENG Jie-hong, KONG Feng, ZHANG Chun-yong, CHENG Qing-lin, HUANG Shou-qiang. EFFECT OF ADDED IRON ON ANAEROBIC DIGESTION PROCESS OF MUNICIPAL SLUDGE IN METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 125-130. doi: 10.13205/j.hjgc.202102020 |
[12] | LIU Xin-yuan, HU Wen-jia, OUYANG Fan, NIE Jia-min, WU Nan, YANG Fan, KONG Si-fang. BIOGAS PRODUCTION AND MICROBIAL COMMUNITY SUCCESSION DURING SEQUENCING BATCH ACCLIMATIZATION OF DIGESTED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 136-141,188. doi: 10.13205/j.hjgc.202103019 |
[13] | WANG Qing-peng, YANG Zhao-hui, XU Rui, ZHANG Yan-ru, CAO Jiao. EFFECT OF NZVI ON ANAEROBIC DIGESTION SYSTEM WITH LOW ORGANIC SLUDGE AND ITS MICROBIAL COMMUNITY DIVERSITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 31-37,54. doi: 10.13205/j.hjgc.202105005 |
[14] | CHEN Si-yuan, XIAO Xiang-zhe, TENG Jun, DONG Shan-yan, LIAN Jun-feng, ZHU Yi-chun. RESEARCH PROGRESS ON METHANOGENIC INHIBITION TECHNOLOGY DURING ANAEROBIC DIGESTION OF EXCESS SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 137-143. doi: 10.13205/j.hjgc.202106020 |
[15] | ZHAO Jia-qi, FAN Xiao-dan, QIU Chun-sheng, WANG Chen-chen, LIU Nan-nan, WANG Dong, WANG Shao-po, SUN Li-ping. ANALYSIS ON DIFFICULTY AND CONTROL STRATEGY OF ANAEROBIC DIGESTION TREATMENT OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 143-148. doi: 10.13205/j.hjgc.202012024 |
[16] | DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025 |
[17] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |
[18] | MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010 |
[20] | Li Wei Liang Meisheng Pei Xuqian Jiang Junjie, . RESEARCH ON APPLICATION OF PULSED ELECTRIC FIELD IN ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 106-109. doi: 10.13205/j.hjgc.201503022 |