Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
BAO Meiling, HU Zhiquan, ZHANG Qiang, HONG Hui, DENG Jun, PEI Yunxia, LI Bingtang. CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 35-42. doi: 10.13205/j.hjgc.202408005
Citation: BAO Meiling, HU Zhiquan, ZHANG Qiang, HONG Hui, DENG Jun, PEI Yunxia, LI Bingtang. CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 35-42. doi: 10.13205/j.hjgc.202408005

CONSTRUCTION OF A SHORTCUT NITROGEN REMOVAL SYSTEM FOR ALGAL-BACTERIAL SYMBIOSIS AND ANALYSIS OF MICROBIAL COMMUNITY STRUCTURE IN SLUDGE

doi: 10.13205/j.hjgc.202408005
  • Received Date: 2023-04-10
    Available Online: 2024-12-02
  • The conventional biological nitrogen removal of wastewater with low C/N ratio and high ammonia nitrogen has some deficiencies, such as high energy consumption of aeration, and high amount of added carbon source. In this study, a shortcut nitrogen removal system for algal-bacterial symbiosis was constructed by combining shortcut nitrification functional sludge enriched with ammonia-oxidizing bacteria (AOB) with Chlorella. The effects of the film coating method and light intensity on nitrogen and phosphorus removal in the system were studied. The high-throughput sequencing technology was used to analyze the microbial community structure, and to analyze and determine the nitrogen conversion pathway in the system. The results demonstrated that the relative abundance of AOB in acclimated sludge was 19.31%, of which the main strain was Nitrosomonas, accounting for 94.41% of total AOB. The shortcut nitrification ability of acclimated sludge was excellent. An efficient nitrogen removal was achieved in the algal-bacterial symbiotic system. When first inoculating sludge and then inoculating microalgae, and the light intensity was set to 5000 lux, the best removal efficiency of TN and TP from simulated biogas slurry in the system could be realized as high as 93.22% and 82.38%, respectively. After stable operation of the system for 37 days, the microbial richness of the algal-bacterial symbiotic biofilm increased, and the nitrogen removal efficiency was higher than 90%. In biofilm, Thauera, with an relative abundance of 56.42%, played a dominant role in denitrification, while the relative abundance of AOB was reduced to 5.65%, and the abundance of NOB was very low. The high efficiency of nitrogen removal was realized through the shortcut nitrification-denitrification process (about 88.46%) and biological assimilation (about 6.79%) in shortcut nitrogen removal system for algal-bacterial symbiosis. About 60.5% of the carbon source for denitrification was saved, compared with traditional biological denitrification technology.
  • [1]
    LI S N, CHU Y H, XIE P, et al. Insights into the microalgae-bacteria consortia treating swine wastewater: symbiotic mechanism and resistance genes analysis[J]. Bioresource Technology,2022,349:126892-126892.
    [2]
    汪晓军,陈永兴,陈振国.厌氧氨氧化及其处理低碳氮比氨氮废水的研究进展[J].工业水处理,2022,42(11):25-31.
    [3]
    袁强军,张宏星,陈芳媛.不同低碳氮比废水中好氧颗粒污泥的长期运行稳定性[J].环境科学,2020,41(10):4661-4668.
    [4]
    WANG C, QIAO S, ZHOU J T. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes[J]. Chemosphere,2023,313.
    [5]
    LIU X G, KIM M, NAKHLA G, et al. Partial nitrification-reactor configurations, and operational conditions: performance analysis[J]. Journal of Environmental Chemical Engineering, 2020,8(4).
    [6]
    SEUNTJENS D, HAN M, KERCKHOF F M, et al. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants[J]. Water Research, 2018, 138: 37-46.
    [7]
    祝贵兵,彭永臻,郭建华.短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2008(10):1552-1557.
    [8]
    REN S, WANG Z, JIANG H, et al. Stable nitritation of mature landfill leachate via in-situ selective inhibition by free nitrous acid[J]. Bioresource Technology,2021,340:125647-125647.
    [9]
    LI Q, XU Y F, LIANG C Z, Peng L, et al. Nitrogen removal by algal-bacterial consortium during mainstream wastewater treatment: transformation mechanisms and potential N2O mitigation[J]. Water Research,2023,235:119890-119890.
    [10]
    WANG J L, DENG Y F, CHEN W, et al. Revealing the role of algae in algae enhanced bacteria consortia for municipal wastewater treatment: performance, characteristics, and microbial pathways[J]. Journal of Water Process Engineering,2023,53.
    [11]
    刘雨雪.藻菌生物膜处理水产养殖废水及其饲料化潜力研究[D]. 武汉:华中科技大学,2021.
    [12]
    陈文婷.固定化藻菌强化榨菜废水尾水的处理[D]. 重庆:重庆大学,2020.
    [13]
    WEI D, XUE X, YAN L, et al. Effect of influent ammonium concentration on the shift of full nitritation to partial nitrification in a sequencing batch reactor at ambient temperature[J]. Chemical Engineering Journal,2014,235:19-26.
    [14]
    CHEN C, SONG Y H, YUAN Y C. The Operating Characteristics of Partial Nitrification by Controlling pH and Alkalinity[J]. Water,2021,13(3):286-286.
    [15]
    VILLAVERDE S, GARCÍA E P A, FDZ P F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Research, 1997,31(5):1180-1186.
    [16]
    VADIVELU V M, YUAN Z G, FUX C, et al The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture[J]. Environmental Science & Technology,2006,40(14): 4442-4448.
    [17]
    LU S M, LIU X G, LIU C, et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J]. Reviews in Environmental Science and Bio/Technology, 2020,19(3):531-542.
    [18]
    董昆,李奕燃,李晓强,等.游离氨对生物脱氮硝化过程细菌种群结构的影响[J].环境化学,2022,41(8):2742-2751.
    [19]
    SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J].Water Research,2007,41(5):1110-1120.
    [20]
    CHEN H C, CHEN Z G, ZHOU S W, et al. Efficient partial nitritation performance of real printed circuit board tail wastewater by a zeolite biological fixed bed reactor[J]. Journal of Water Process Engineering,2023,53.
    [21]
    OLIVER T I, MOHAMED S Z, RANIA A H, et al Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT[J]. Journal of Environmental Chemical Engineering,2020,8(2).
    [22]
    BENNETT K, SADLER N C, WRIGHT A T, et al. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea[J]. Applied and Environmental Microbiology,2016,82(8):2270-2279.
    [23]
    WANG X X, FANG F, CHEN Y P, et al. N2O micro-profiles in biofilm from a one-stage autotrophic nitrogen removal system by microelectrode[J]. Chemosphere,2017,175:482-489.
    [24]
    ABHISHEK D, PRADYUT K, SUNITA A. Two stage treatability and biokinetic study of dairy wastewater using bacterial consortium and microalgae[J]. Biocatalysis and Agricultural Biotechnology,2022,43.
    [25]
    ALCÁNTARA C, MUÑOZ R, NORVILL Z, et al. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater[J]. Bioresource Technology,2015,177:110-117.
    [26]
    SHI F, LIU Z L, LI J L, et al. Alterations in microbial community during the remediation of a black-odorous stream by acclimated composite microorganisms[J].Journal of Environmental Sciences, 2022,118(8):181-193.
    [27]
    ZENG D W, MIAO J, WU G X, et al. Nitrogen removal, microbial community and electron transport in an integrated nitrification and denitrification system for ammonium-rich wastewater treatment[J].International Biodeterioration & Biodegradation,2018,133:202-209.
    [28]
    包美玲,胡智泉,吴滔,等. 藻菌共生光序批式生物膜反应器短程脱氮效能研究[J]. 水处理技术, 2021, 47 (6): 58-63

    ,69.
  • Relative Articles

    [1]LU Baoguang, XUE Shiyu, WU Chuandong, SUN Xueying, CHEN Chenyong, WANG Zhongqian, WEN Huifang, YUN Yupan, MIAO Zhijia. EFFECT OF INFLUENT C/N RATIO ON PHOSPHORUS AND NITROGEN REMOVAL BY PARTIAL NITRIFICATION-DENITRIFICATION IN A2/O PROCESS WITH LOW DISSOLVED OXYGEN CONCENTRATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 89-96. doi: 10.13205/j.hjgc.202412012
    [2]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [3]ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002
    [4]LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001
    [5]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [6]FU Jiachen, WANG Jing, ZHAO Yiying, WEN Huiyan, AN Xiao, CHEN Yucheng, ZHOU Zhongbo. NITROGEN REMOVAL PERFORMANCE BY ALGAL-DRIVEN AEROBIC METHANE OXIDATION COUPLED WITH DENITRIFICATION IN A PHOTO-BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 18-25. doi: 10.13205/j.hjgc.202308003
    [7]ZHANG Shujun, HUANG Jianming, MA Shuqing, WANG Cong, TIAN Xiadi, LI Kun, ZHAO Dan, HAN Xiaoyu. NITROGEN REMOVAL CHARACTERISTICS OF A STEP-FEED CONTINUOUS FLOW PARTIAL DENITRIFICATION-ANAEROBIC AMMONIUM OXIDATION COUPLED WITH DENITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 13-18. doi: 10.13205/j.hjgc.202211002
    [8]LI Zhanpeng, YUAN Huizhou, KE Shuizhou, YUAN Jiajia, ZHU Jia. EFFECTS OF DIMETHYL PHTHALATE ON VEGETATION-ACTIVATED SLUDGE PROCESS AND ITS REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 202-210. doi: 10.13205/j.hjgc.202212027
    [9]SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024
    [10]NIU Yongjian, DONG Kun, NIU Hongliang, XIN Mingxing, LI Weiwei, SUN Hongwei. EFFECT OF FREE AMMONIA ON PHOSPHORUS REMOVAL EFFICIENCY AND MICROBIAL COMMUNITY STRUCTURE IN AN EBPR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 24-31. doi: 10.13205/j.hjgc.202210004
    [11]YAO Chuang, LIU Jianxin, ZHAO Ziling, LIN Guoying, LIU Hui. EFFECTS OF CARBON RESOURCE ADDITON STRATEGIES ON PHOSPHORUS AND NITROGEN REMOVAL AND MICROBIAL COMMUNITY STRUCTURE IN AN A2/O SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 21-26,223. doi: 10.13205/j.hjgc.202201004
    [12]CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
    [13]HAN Ya-lin, WANG Fu-hao, WANG Qun, LI Ting, SHE Zong-lian. EFFECT OF OPERATIONAL MODE ON NITROGEN REMOVAL AND MICROBIAL CUMMUNITY IN PROCESS OF SIMULTANEOUS PARTIAL NITRIFICATION AND DENITRIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 51-57,17. doi: 10.13205/j.hjgc.202101007
    [14]WU Dai-shun, CHANG Huan-huan, CHEN Cui-zhong, YANG Hao, HOU Hong-xun, SUN Hong-wei. EFFECTS OF FREE AMMONIA (FA) ON STRUCTURE AND DIVERSITY OF MICROFLORA IN SBR SHORT-CUT NITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 82-89. doi: 10.13205/j.hjgc.202103012
    [15]LIU Xin-yuan, HU Wen-jia, OUYANG Fan, NIE Jia-min, WU Nan, YANG Fan, KONG Si-fang. BIOGAS PRODUCTION AND MICROBIAL COMMUNITY SUCCESSION DURING SEQUENCING BATCH ACCLIMATIZATION OF DIGESTED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 136-141,188. doi: 10.13205/j.hjgc.202103019
    [16]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
  • Cited by

    Periodical cited type(1)

    1. 冯倩倩,夏茹婷,梅洪,程凯. 铜绿微囊藻对自养氨氧化细菌的抑制作用. 中国环境科学. 2024(11): 6332-6340 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.9 %FULLTEXT: 7.9 %META: 92.1 %META: 92.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 71.9 %其他: 71.9 %兰州: 0.7 %兰州: 0.7 %南昌: 1.4 %南昌: 1.4 %合肥: 0.7 %合肥: 0.7 %周口: 2.2 %周口: 2.2 %呼伦贝尔: 0.7 %呼伦贝尔: 0.7 %天津: 0.7 %天津: 0.7 %太原: 0.7 %太原: 0.7 %广州: 5.0 %广州: 5.0 %张家口: 2.9 %张家口: 2.9 %扬州: 0.7 %扬州: 0.7 %朝阳: 0.7 %朝阳: 0.7 %池州: 1.4 %池州: 1.4 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 3.6 %芒廷维尤: 3.6 %芝加哥: 0.7 %芝加哥: 0.7 %西安: 1.4 %西安: 1.4 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.7 %运城: 0.7 %长沙: 0.7 %长沙: 0.7 %黄山: 0.7 %黄山: 0.7 %其他兰州南昌合肥周口呼伦贝尔天津太原广州张家口扬州朝阳池州漯河芒廷维尤芝加哥西安贵阳运城长沙黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(1) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return