Citation: | JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012 |
[1] |
石晓晓, 郑国砥, 高定,等.中国畜禽粪便养分资源总量及替代化肥潜力[J].资源科学,2021,43(2):403-411.
|
[2] |
国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2020.
|
[3] |
国家统计局. 中国农村统计年鉴(2010-2020)[M]. 北京:中国统计出版社, 2010-2020.
|
[4] |
国家统计局. 中国环境统计年鉴(2010-2020)[M]. 北京:中国统计出版社, 2010-2020.
|
[5] |
SANCHEZ O J, OSPINA D A, MONTOYA S. Compost supplementation with nutrients and microorganisms in composting process[J]. Waste Management, 2017, 69(11):136-153.
|
[6] |
VACCARI D A, POWERS S M, LIU X. Demand-driven model for global phosphate rock suggests paths for phosphorus sustainability[J]. Environmental Science and Technology, 2019, 53(17):10417-10425.
|
[7] |
赵鑫, 蔡慢弟, 董倩倩,等.中低品位磷矿资源高效利用机制与途径研究进展[J].植物营养与肥料学报,2018,24(4):1121-1130.
|
[8] |
黄雷, 王君, 廖宗文,等.中低品位磷矿直接利用技术研究进展[J].化工矿物与加工,2012,41(4):32-37.
|
[9] |
詹亚斌, 张磊, 丁晓艳,等.一株堆肥高效解磷菌的筛选,鉴定及其溶磷特性[J].科学技术与工程,2022,22(3):960-966.
|
[10] |
魏自民, 王世平, 席北斗,等.生活垃圾堆肥对难溶性磷有效性的影响[J].环境科学,2007,28(3):679-683.
|
[11] |
ODONGO N E, HYOUNG-HO K, CHOI H C, et al. Improving rock phosphate availability through feeding, mixing and processing with composting manure[J]. Bioresource Technology, 2007, 98(15):2911-2918.
|
[12] |
NISHANTH D, BISWAS D R. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum)[J]. Bioresource Technology, 2008, 99(9):3342-3353.
|
[13] |
KANWA S. Aerobic composting of water lettuce for preparation of phosphorus enriched organic manure[J]. African Journal of Microbiology Research, 2011, 5(14):1784-1793.
|
[14] |
BAMAGOOS A A, ALHARBY H F, BELAL E E, et al. Phosphate-solubilizing bacteria as a panacea to alleviate stress effects of high soil CaCO3 content in phaseolus vulgaris with special reference to p-releasing enzymes[J]. Sustainability, 2021, 13(13):7063.
|
[15] |
KHAN K S, JOERGENSEN R G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers[J]. Bioresource Technology, 2009, 100(1):303-309.
|
[16] |
ACEVEDO E, GALINDO-CASTAE T, PRADA F, et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia[J]. Applied Soil Ecology, 2014, 80:26-33.
|
[17] |
MANDER C, WAKELIN S, YOUNG S, et al. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J]. Soil Biology and Biochemistry, 2012, 44(1):93-101.
|
[18] |
刘玉学, 唐旭, 杨生茂,等.生物炭对土壤磷素转化的影响及其机理研究进展[J].植物营养与肥料学报,2016,22(6):1690-1695.
|
[19] |
单德鑫, 李淑芹, 许景钢.好氧堆肥对难溶性磷转化的影响[J].环境科学学报,2009,29(1):146-150.
|
[20] |
PEPE O, VENTORINO V, BLAIOTTA G. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application[J]. Waste management, 2013, 33(7):1616-1625.
|
[21] |
LÓPEZ-GONZÁLEZ J, SUÁREZ-ESTRELLA F, VARGAS-GARCÍA M, et al. Dynamics of bacterial microbiota during lignocellulosic waste composting:studies upon its structure, functionality and biodiversity[J]. Bioresource technology, 2015, 175:406-416.
|
[22] |
JURADO M, LÓPEZ M J, SUÁREZ-ESTRELLA F, et al. Exploiting composting biodiversity:study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting[J]. Bioresource technology, 2014, 162:283-293.
|
[23] |
SCERVINO J M, MESA M P, DELLA MÓNICA I, et al. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization[J]. Biology and fertility of soils, 2010, 46(7):755-763.
|
[24] |
GULATI A, SHARMA N, VYAS P, et al. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas[J]. Archives of microbiology, 2010, 192(11):975-983.
|
[25] |
曾光明, 黄国和, 袁兴中. 堆肥环境生物与控制[M]. 堆肥环境生物与控制, 2006.
|
[26] |
HEDLEY M J, STEWART J, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5):970-976.
|
[27] |
龚玲婷, 石林, 蔡如梦.矿物质调理剂对土壤养分含量及植物营养吸收的影响[J].土壤,2019,51(5):916-922.
|
[28] |
ENEJI A E, HONNA T, YAMAMOTO S, et al. Changes in humic substances and phosphorus fractions during composting[J]. Communications in soil science and plant analysis, 2003, 34(15/16):2303-2314.
|
[29] |
WEI Y, ZHAO Y, SHI M, et al. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation[J]. Bioresource Technology, 2018, 247:190-199.
|
[30] |
池景良, 郝敏, 王志学,等.解磷微生物研究及应用进展[J].微生物学杂志,2021,41(1):1-7.
|
[31] |
OWEN D, WILLIAMS, et al. Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition[J]. Applied Soil Ecology, 2015.
|
[32] |
ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:a review[J]. Science of the Total Environment, 2018, 612:522-537.
|
[33] |
于海洋, 周方园, 李凤,等.解磷微生物及其在土壤污染防治中的应用研究进展[J].环境科学与技术,2020,43(增刊1):44-51.
|
[34] |
VASSILEV N, MENDES G, COSTA M, et al. Biotechnological Tools for Enhancing Microbial Solubilization of Insoluble Inorganic Phosphates[J]. Geomicrobiology Journal, 2014, 31(9):751-763.
|
[35] |
WEI Y, WEI Z, CAO Z, et al. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting[J]. Bioresource Technology, 2016, 211:610-617.
|
[36] |
WEI Y, YUE Z, QIAN L, et al. Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation[J]. Bioresource Technology, 2018, 264:277-284.
|
[37] |
张芮瑞, 邱树毅, 周少奇,等.丢糟和磷矿粉高温堆肥中耐高温解磷菌的筛选及性能分析[J].生物技术通报,2020,36(5):2019-1150.
|
[38] |
魏自民, 黄彩虹, 谢丽,等.城乡混合有机垃圾快速稳定化及资源化利用技术的研究构想与前景展望[J].工程科学与技术,2021,53(4):23-32.
|
[39] |
ZHANG J, ZENG G, CHEN Y, et al. Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting[J]. Bioresource Technology, 2011, 102(3):2950-2956.
|
[40] |
魏雨泉. 解磷微生物强化堆肥对难溶性磷转化及磷组分调控机制研究[D].哈尔滨:东北农业大学,2017.
|
[41] |
KAMAT S S, WILLIAMS H J, RAUSHEL F M. Intermediates in the transformation of phosphonates to phosphate by bacteria[J]. Nature, 2011, 480(7378):570-573.
|
[42] |
李鸣晓, 席北斗, 魏自民,等.耐高温解磷菌的筛选及解磷能力研究[J].环境科学研究,2008,21(3):165-169.
|
[43] |
赵小蓉, 林启美, 李保国. 微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J]. 微生物学杂志, 2003, 23(3):5-7.
|
[44] |
WEI Y, ZHAO Y, WANG H, et al. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation[J]. Bioresource Technology, 2016, 221:139-146.
|
[45] |
XI B, HE X, DANG Q, et al. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting[J]. Bioresource Technology, 2015,196:399-405.
|
[46] |
常远, 詹亚斌, 陶兴玲,等.外源添加剂对富磷餐厨废弃物堆肥磷素活化的影响[J].环境工程,40(10):1-11.
|
[47] |
夏家帅.柑橘皮渣堆肥工艺优化及其微生物群落研究[D].重庆:重庆大学,2018.
|
[48] |
魏自民, 席北斗, 王世平,等.高温解磷菌对堆肥所添加难溶性磷素转化的试验研究[J].环境科学,2008,29(7):2073-2076.
|
[49] |
胡春明, 姚波, 席北斗,等.堆肥复合功能菌剂的优化组合研究[J].环境科学研究,2010(8):1039-1043.
|
[50] |
WEI Y, ZHAO Y, FAN Y, et al. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting[J]. Bioresource Technology, 2017, 241:134-141.
|
[51] |
WEI Y, ZHAO, SHI, et al. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation[J]. Bioresource Technology 2018.
|
[52] |
ZHAO Y, LU Q, WEI Y, et al. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis[J]. Bioresource Technology, 2016, 219:196-203.
|
[53] |
张明玉, 刘永德, 赵继红.复合微生物接种在垃圾堆肥化中的研究进展[J].环境科学与管理,2010,35(2):49-52.
|
[54] |
ZHE W, HUI C A, ZZ B, et al. Low-temperature straw biochar:sustainable approach for sustaining higher survival of B. megaterium and managing phosphorus deficiency in the soil[J]. Science of The Total Environment, 2022,830:154-790.
|
[55] |
ZHANG X, ZHAN Y, ZHANG H, et al. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting[J]. Bioresource Technology, 2021, 340:125714.
|
[56] |
徐智, 李季.2 种微生物菌剂对堆肥过程中酶变化的影响研究[J].中国农学通报,2013,29(8):175-179.
|
[57] |
WANG H, ZHAO Y, WEI Y, et al. Biostimulation of nutrient additions on indigenous microbial community at the stage of nitrogen limitations during composting[J]. Waste Management, 2018, 74:194-202.
|
[58] |
ZHAN Y, ZHANG Z, MA T, et al. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting[J]. Bioresource Technology, 2021, 337:125433.
|
[59] |
KIM C H, HAN S H, KIM K Y, et al. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium[J]. Current Microbiology, 2003, 47(6):457-461.
|
[60] |
DAI Z, LIU G, CHEN H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3):757-770.
|
[61] |
WEI Y, ZHAO Y, XI B, et al. Changes in phosphorus fractions during organic wastes composting from different sources[J]. Bioresource Technology, 2015, 189:349-356.
|
[62] |
WEI Z, XI B, ZHAO Y, et al. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid[J]. Chemosphere, 2007, 68(2):368-374.
|
[63] |
ZHAO Y, WEI Y, ZHANG Y, et al. Roles of composts in soil based on the assessment of humification degree of fulvic acids[J]. Ecological Indicators, 2017, 72:473-480.
|
[64] |
GUPPY C N, MENZIES N, MOODY P W, et al. Competitive sorption reactions between phosphorus and organic matter in soil:a review[J]. Soil Research, 2005, 43(2):189-202.
|
[65] |
URRUTIA O, GUARDADO I, ERRO J, et al. Theoretical chemical characterization of phosphate-metal-humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants[J]. Journal of the Science of Food and Agriculture, 2013, 93(2):293-303.
|
[66] |
SCHMIDT M W, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.
|
[67] |
TAN K H. Humic matter in soil and the environment:principles and controversies[M]. Boca Raton:CRC press, 2003.
|
[68] |
SAITO T, BRDJANOVIC D, van LOOSDRECHT M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water Research, 2004, 38(17):3760-3768.
|
[69] |
WANG R, LI Y, CHEN W, et al. Phosphate release involving PAOs activity during anaerobic fermentation of EBPR sludge and the extension of ADM1[J]. Chemical Engineering Journal, 2016, 287:436-447.
|
[1] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[2] | YUAN Xusheng, MENG Bangbang, HUANG Hui, YUE Bo, WU Haixia. ANALYSIS OF UTILIZATION AND DISPOSAL METHODS OF TYPICAL RURAL SOLID WASTE IN CHINA BASED ON ITS CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 216-221. doi: 10.13205/j.hjgc.202303029 |
[3] | TAI Dezhi, YU Jixin, ZHANG Hua, ZENG Honghu, SUN Xiaojie, LU Ze. FULVIC ACID SPECTRAL CHARACTERISTICS DURING COMPOSTING OF BIOLEACHING SLUDGE AND DIFFERENT MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 119-128. doi: 10.13205/j.hjgc.202303016 |
[4] | LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006 |
[5] | LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011 |
[6] | WU Weixia, HUANG Caihong, TANG Zhurui, LI Yanhong, ZHU Lin, MA Caiyun. RESEARCH ADVANCE ON COMPOST ODOR IN 2001-2020 BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 211-221. doi: 10.13205/j.hjgc.202211029 |
[7] | QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007 |
[8] | ZHAO Shan, GUO Xue-bin, YANG Xiao-fang, WANG Dong-sheng. RESEARCH ON VOLATILE SULFIDE (VSC) AND AMMONIA EMISSION LAW IN PROCESS OF MUNICIPAL SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 82-88. doi: 10.13205/j.hjgc.202102013 |
[9] | ZHANG Chuan-yan, XI Bei-dou, ZHANG Qiang, BAI Si-cong, ZHAO Xin-yu. APPLICATION STATUS AND PROSPECT OF COMPOST IN SOIL REMEDIATION AND QUALITY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 176-186. doi: 10.13205/j.hjgc.202109025 |
[10] | ZHAO Xiu-yun, ZHAO Xin-yu, YANG Jin-jin, LI Shao-kang, LU Xiang-xin, LI Xiang. RESEARCH PROGRESS ON LIGNIN DEGRADATION MECHANISM AND INFLUENCING FACTORS DURING COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 128-136. doi: 10.13205/j.hjgc.202106019 |
[11] | CHE Yue-chi, YAN Bei-bei, WANG Xu-tong, CHEN Guan-yi, DAN Zeng, MENG De-an. RESEARCH PROGRESS OF TECHNICAL OPTIMIZATION OF SEWAGE SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 164-173. doi: 10.13205/j.hjgc.202104025 |
[12] | YAO Quan-wei, ZHANG Jun, YAN Qin-ying, WANG Dun-qiu, XI Bei-dou. MAIN FACTORS ON DISSIPATION OF TYPICAL FLUOROQUINOLONES IN SEWAGE SLUDGE COMPOST DURING MESOPHILIC AND THERMOPHILIC PHASES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 200-207. doi: 10.13205/j.hjgc.202009032 |
[16] | Wang Yadong, Wang Shaopo, Zheng Shasha, Zhang Yan, Sun Liping, Du Jinshan. POLY-P ACCUMULATING MICROORGANISMS AND IDENTIFYING METHODS FOR BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005 |
[17] | Hao Yidang, Wu Long, Shen Ping, Li Shiqi. PRECISE REDUCTION EXPERIMENT STUDY OF BAYER RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 100-104. doi: 10.13205/j.hjgc.201501023 |
[18] | Xia Bingbin Wang Feng Yang Haizhen. THE PREPARATION AND COMPONENT ANALYSIS OF WOOD VINEGAR BASED ON MEDICAL WASTE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 112-116. doi: 10.13205/j.hjgc.201501026 |
1. | 朱晓芸,谢文静,包蔚,余海芬,何锴,吴真善,王络绎,黄明皓. 生物炭对土壤磷素有效性的影响研究进展. 上海农业科技. 2024(02): 29-31 . ![]() | |
2. | 田婧婕,崔二苹,刘春成,胡超,李中阳,崔丙健. 生物强化技术在农业废弃物堆肥处理中的应用及研究进展. 河南农业科学. 2024(11): 1-16 . ![]() |